level sensor
Recently Published Documents


TOTAL DOCUMENTS

623
(FIVE YEARS 183)

H-INDEX

27
(FIVE YEARS 5)

2022 ◽  
Vol 20 (1) ◽  
pp. 011202
Author(s):  
Xiren Jin ◽  
Zeju Rui ◽  
Zihang Xiang ◽  
Chupeng Lu ◽  
Shuo Zhang ◽  
...  

2021 ◽  
Vol 3 ◽  
Author(s):  
Salvador Peña-Haro ◽  
Maxence Carrel ◽  
Beat Lüthi ◽  
Issa Hansen ◽  
Robert Lukes

The volumetric flow rate in rivers is essential to analyze hydrological processes and at the same time it is one of the most difficult variables to measure. Image based discharge measurements possess several advantages, one of them being that the sensor (camera) is not in contact with the water, it can be placed safe of floods, its mounting position is very flexible and there is no need of expensive structures/constructions. During the last years several image-based methods for measuring the surface velocity in rivers and canals have been proposed and successfully tested under different conditions. However, these methods have been used and configured to perform well under the particular conditions of a single recording or single site. The objective of this paper is to present a system which has reached a Technology Readiness Level (TRL) 9. The system is able to measure the volumetric flow under different conditions day and night and all year long, the system is able to perform in rivers or canals of different sizes and flow velocities and under different conditions of visibility. In addition, the system is capable of measuring the river stage optically without the need of a stage, but it can also integrate external level sensor. Important for a wide set of customers, the system must be able to interface with the various common signal input and output standards, such as 4–20 mAmp, modbus, SDI-12, ZRXP, and even with customer specific formats. Additionally, the developed technology can be implemented as an edge or as a cloud system. The cloud system only needs a camera with Internet connection to send videos to the cloud where they are processed, while the edge systems have a processing unit installed at the site where the processing is done. This paper presents the key aspects needed to move from prototype with TRL5-7 and lower toward the presented field proven system with a TRL 9.


Sensors ◽  
2021 ◽  
Vol 21 (23) ◽  
pp. 8080
Author(s):  
Ahmed Shaheen ◽  
Umair bin Waheed ◽  
Michael Fehler ◽  
Lubos Sokol ◽  
Sherif Hanafy

Automatic detection of low-magnitude earthquakes has become an increasingly important research topic in recent years due to a sharp increase in induced seismicity around the globe. The detection of low-magnitude seismic events is essential for microseismic monitoring of hydraulic fracturing, carbon capture and storage, and geothermal operations for hazard detection and mitigation. Moreover, the detection of micro-earthquakes is crucial to understanding the underlying mechanisms of larger earthquakes. Various algorithms, including deep learning methods, have been proposed over the years to detect such low-magnitude events. However, there is still a need for improving the robustness of these methods in discriminating between local sources of noise and weak seismic events. In this study, we propose a convolutional neural network (CNN) to detect seismic events from shallow borehole stations in Groningen, the Netherlands. We train a CNN model to detect low-magnitude earthquakes, harnessing the multi-level sensor configuration of the G-network in Groningen. Each G-network station consists of four geophones at depths of 50, 100, 150, and 200 m. Unlike prior deep learning approaches that use 3-component seismic records only at a single sensor level, we use records from the entire borehole as one training example. This allows us to train the CNN model using moveout patterns of the energy traveling across the borehole sensors to discriminate between events originating in the subsurface and local noise arriving from the surface. We compare the prediction accuracy of our trained CNN model to that of the STA/LTA and template matching algorithms on a two-month continuous record. We demonstrate that the CNN model shows significantly better performance than STA/LTA and template matching in detecting new events missing from the catalog and minimizing false detections. Moreover, we find that using the moveout feature allows us to effectively train our CNN model using only a fraction of the data that would be needed otherwise, saving plenty of manual labor in preparing training labels. The proposed approach can be easily applied to other microseismic monitoring networks with multi-level sensors.


2021 ◽  
Vol 2107 (1) ◽  
pp. 012038
Author(s):  
F. A. Ismail ◽  
M. K. Ali Hassan ◽  
F. S. Ahmad Saad ◽  
H. Yazid ◽  
M. J. Aziz Safar ◽  
...  

Abstract Internet of Things (IoT) is a revolutionary technology that represents the future of communication and computing. The field of IoT implementation is vast and can be applied in every field. This project is about to develop an IoT system for Harumanis Farm as agriculture is becoming an essential growing sector throughout the world due to the increasing population. The major challenge in the Harumanis sector is to improve the productivity and quality of Harumanis without continuous manual monitoring. IoT improves crop management, cost-effectiveness, crop monitoring and also improves the quality and quantity of the crop. This IoT system completes with several sensors to monitor the Harumanis farm, such as temperature and humidity sensor, pH level sensor, soil moisture sensor, also nitrogen, phosphorous, and potassium (NPK) sensor. The system is a simple IoT architecture where sensors collect information and send it over the Wi-Fi network to the mobile applications.


2021 ◽  
Vol 2074 (1) ◽  
pp. 012019
Author(s):  
Bing Li ◽  
Jinghong Ji

Abstract In this paper, an intelligent water dispenser automatic control system is designed by using a microcontroller as the core. Relevant signals are collected through temperature sensor, liquid level sensor and other sensors, then send them to the microcontroller for processing and control, and use the liquid crystal display for display. Temperature, effluent and liquid level can be controlled according to their own needs, so as to realize the intelligent control of the water dispenser. The intelligent water dispenser automatic control system designed in this paper has low hardware cost and easy operation in the use process.


Sign in / Sign up

Export Citation Format

Share Document