Graphene Oxide/Urease Nanobiosensor Applied for Cadmium Detection in River Water

2021 ◽  
Vol 21 (8) ◽  
pp. 9626-9633
Author(s):  
Sandra Cristina Ballen ◽  
Greice M. Ostrowski ◽  
Juliana Steffens ◽  
Clarice Steffens
Chemosensors ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 32 ◽  
Author(s):  
Malena Karla Lombello Coelho ◽  
Daniela Nunes da Silva ◽  
Arnaldo César Pereira

This work describes the development of an electrochemical sensor that was used in the determination of ethinyl estradiol (EE) in pharmaceutical formulations, river water, and milk using the square wave voltammetry technique. Studies were carried out using different carbonaceous materials (multiwalled carbon nanotubes, reduced graphene oxide Reduced graphene oxide, graphite) and different metallic phthalocyanines (cobalt, iron and manganese). Based on these studies it was possible to obtain the best system for the construction of the sensor. The device was obtained by the chemical modification of a glassy carbon electrode (GCE) with multiwalled carbon nanotubes (MWCNTs) and cobalt phthalocyanine (CoPc). The materials were characterized by scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FT-IR). Under conditions previously optimized for the proposed method, an analytical curve was constructed, presenting linearity in a range of 2.50–90.0 μmol L−1 (R = 0.990), with detection limit of 2.20 μmol L−1 and quantification of 2.50 μmol L−1. The validation of the methodology for the determination of EE using GCE-MWCNTs-CoPc was performed, being accurate, precise, stable and sensitive. The recovery of ethinyl estradiol in the sample of pharmaceutical formulation was 103.93%, in the samples of river water ranged from 92.75% to 96.47%, and in the milk sample was from 88.00% to 96.20%. Thus, the proposed method presented a viable alternative for the determination of ethinyl estradiol in the quality control of pharmaceutical and food formulations as well as in environmental control.


Author(s):  
Judith A. Murphy ◽  
Anthony Paparo ◽  
Richard Sparks

Fingernail clams (Muscu1ium transversum) are dominant bottom-dwelling animals in some waters of the midwest U.S. These organisms are key links in food chains leading from nutrients in water and mud to fish and ducks which are utilized by man. In the mid-1950’s, fingernail clams disappeared from a 100-mile section of the Illinois R., a tributary of the Mississippi R. Some factor(s) in the river and/or sediment currently prevent clams from recolonizing areas where they were formerly abundant. Recently, clams developed shell deformities and died without reproducing. The greatest mortality and highest incidence of shell deformities appeared in test chambers containing the highest proportion of river water to well water. The molluscan shell consists of CaCO3, and the tissue concerned in its secretion is the mantle. The source of the carbonate is probably from metabolic CO2 and the maintenance of ionized Ca concentration in the mantle is controlled by carbonic anhydrase. The Ca is stored in extracellular concentric spherical granules(0.6-5.5μm) which represent a large amount of inertCa in the mantle. The purpose of this investigation was to examine the role of raw river water and well water on shell formation in the fingernail clam.


Sign in / Sign up

Export Citation Format

Share Document