A Remote Sensing-Based Approach for Debris-Flow Susceptibility Assessment Using Artificial Neural Networks and Logistic Regression Modeling

Author(s):  
Racha Elkadiri ◽  
Mohamed Sultan ◽  
Ahmed M. Youssef ◽  
Tamer Elbayoumi ◽  
Ronald Chase ◽  
...  
2017 ◽  
Vol 6 (3) ◽  
pp. 57-60
Author(s):  
Денис Кривогуз ◽  
Denis Krivoguz

Modern approaches to the region’s landslide susceptibility assessment are considered in this paper. Have been presented descriptions of the most used techniques for landslide susceptibility assessment: logistic regression, indicator validity, linear discriminant analysis and application of artificial neural networks. These techniques’ advantages and disadvantages are discussed in the paper. The most suitable techniques for various conditions of analysis have been marked. It has been concluded that the most acceptable techniques of analysis for a large number of input data related to the studied region are the method of logistic regression and indicator validity method. With these methods the most accurate results are achieved. When there is a lack of information, it is more expedient to use linear discriminant analysis and artificial neural networks that will minimize potential analysis inaccuracies.


2021 ◽  
Vol 184 ◽  
pp. 106096
Author(s):  
Mailson Freire de Oliveira ◽  
Adão Felipe dos Santos ◽  
Elizabeth Haruna Kazama ◽  
Glauco de Souza Rolim ◽  
Rouverson Pereira da Silva

2020 ◽  
Author(s):  
Ehsan Foroumandi ◽  
Vahid Nourani ◽  
Elnaz Sharghi

Abstract Lake Urmia, as the largest lake in Iran, has suffered from water-level decline and this problem needs to be investigated accurately. The major reason for the decline is controversial. The current paper aimed to study the hydro-environmental variables over the Lake Urmia basin using remote sensing tools, artificial neural networks, wavelet transforms, and Mann–Kendall trend tests from 1995 to 2019 in order to determine the primary reason of the decline and to find the most important hydrologic periodicities over the basin. The results indicated that for the monthly-, seasonally-, and annually-based time series, the components with 4-month and 16-month, 24- and 48-month, and 2- and 4-year, respectively, are the most dominant periodicities over the basin. The agricultural increase according to the vegetation index and evapotranspiration and their close relationship with the water-level change indicated that human land-use is the main reason for the decline. The increasing agriculture, in the situations that the precipitation has not increased, caused the inflow runoff to the lake to decline and the remaining smaller discharge is not sufficient to stabilize the water level. Temperature time series, also, has experienced a significant positive trend which intensified the water-level change.


2011 ◽  
Vol 36 (4) ◽  
pp. 2449-2454 ◽  
Author(s):  
Seyed Taghi Heydari ◽  
Seyed Mohammad Taghi Ayatollahi ◽  
Najaf Zare

Sign in / Sign up

Export Citation Format

Share Document