landslide susceptibility assessment
Recently Published Documents


TOTAL DOCUMENTS

284
(FIVE YEARS 98)

H-INDEX

40
(FIVE YEARS 7)

2021 ◽  
Vol 13 (24) ◽  
pp. 5068
Author(s):  
Shuhao Liu ◽  
Kunlong Yin ◽  
Chao Zhou ◽  
Lei Gui ◽  
Xin Liang ◽  
...  

The power network has a long transmission span and passes through wide areas with complex topography setting and various human engineering activities. They lead to frequent landslide hazards, which cause serious threats to the safe operation of the power transmission system. Thus, it is of great significance to carry out landslide susceptibility assessment for disaster prevention and mitigation of power network. We, therefore, undertake an extensive analysis and comparison study between different data-driven methods using a case study from China. Several susceptibility mapping results were generated by applying a multivariate statistical method (logistic regression (LR)) and a machine learning technique (random forest (RF)) separately with two different mapping-units and predictor sets of differing configurations. The models’ accuracies, advantages and limitations are summarized and discussed using a range of evaluation criteria, including the confusion matrix, statistical indexes, and the estimation of the area under the receiver operating characteristic curve (AUROC). The outcome showed that machine learning method is well suitable for the landslide susceptibility assessment along transmission network over grid cell units, and the accuracy of susceptibility models is evolving rapidly from statistical-based models toward machine learning techniques. However, the multivariate statistical logistic regression methods perform better when computed over heterogeneous slope terrain units, probably because the number of units is significantly reduced. Besides, the high model predictive performances cannot guarantee a high plausibility and applicability of subsequent landslide susceptibility maps. The selection of mapping unit can produce greater differences on the generated susceptibility maps than that resulting from the selection of modeling methods. The study also provided a practical example for landslide susceptibility assessment along the power transmission network and its potential application in hazard early warning, prevention, and mitigation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Ting Xiao ◽  
Lanbing Yu ◽  
Weiming Tian ◽  
Chang Zhou ◽  
Luqi Wang

A landslide susceptibility map (LSM) is the basis of hazard and risk assessment, guiding land planning and utilization, early warning of disaster, etc. Researchers are often overly keen on hybridizing state-of-the-art models or exploring new mathematical susceptibility models to improve the accuracy of the susceptibility map in terms of a receiver operator characteristic curve. Correlation analysis of the causal factors is a necessary routine process before susceptibility modeling to ensure that the overall correlation among all factors is low. However, this overall correlation analysis is insufficient to detect a high local correlation among the causal factor classes. The objective of this study is to answer three questions: 1) Is there a high correlation between causal factors in some parts locally? 2) Does it affect the accuracy of landslide susceptibility assessment? and 3) How can this influence be eliminated? To this aim, Wanzhou County was taken as the test site, where landslide susceptibility assessment based on 12 causal factors has been previously performed using the frequency ratio (FR) model and random forest (RF) model. In this work, we conducted a local spatial correlation analysis of the “altitude” and “rivers” factors and found a sizeable spatial overlap between altitude-class-1 and rivers-class-1. The “altitude” and “rivers” factors were reclassified, and then the FR model and RF model were used to reevaluate the susceptibility and analyze the accuracy loss caused by the local spatial correlation of the two factors. The results demonstrated that the accuracy of LSMs was markedly enhanced after reclassification of “altitude” and “rivers,” especially for the RF model–based LSM. This research shed new light on the local correlation of causal factors arising from a particular geomorphology and their impact on susceptibility.


2021 ◽  
Vol 13 (22) ◽  
pp. 4694
Author(s):  
Guangzhi Rong ◽  
Kaiwei Li ◽  
Yulin Su ◽  
Zhijun Tong ◽  
Xingpeng Liu ◽  
...  

Landslides pose a constant threat to the lives and property of mountain people and may also cause geomorphological destruction such as soil and water loss, vegetation destruction, and land cover change. Landslide susceptibility assessment (LSA) is a key component of landslide risk evaluation. There are many related studies, but few analyses and comparisons of models for optimization. This paper aims to introduce the Tree-structured Parzen Estimator (TPE) algorithm for hyperparameter optimization of three typical neural network models for LSA in Shuicheng County, China, as an example, and to compare the differences of predictive ability among the models in order to achieve higher application performance. First, 17 influencing factors of landslide multiple data sources were selected for spatial prediction, hybrid ensemble oversampling and undersampling techniques were used to address the imbalanced sample and small sample size problem, and the samples were randomly divided into a training set and validation set. Second, deep neural network (DNN), recurrent neural network (RNN), and convolutional neural network (CNN) models were adopted to predict the regional landslides susceptibility, and the TPE algorithm was used to optimize the hyperparameters respectively to improve the assessment capacity. Finally, to compare the differences and optimization effects of these models, several objective measures were applied for validation. The results show that the high-susceptibility regions mostly distributed in bands along fault zones, where the lithology is mostly claystone, sandstone, and basalt. The DNN, RNN, and CNN models all perform well in LSA, especially the RNN model. The TPE optimization significantly improves the accuracy of the DNN and CNN (3.92% and 1.52%, respectively), but does not improve the performance of the RNN. In summary, our proposed RNN model and TPE-optimized DNN and CNN model have robust predictive capability for landslide susceptibility in the study area and can also be applied to other areas containing similar geological conditions.


2021 ◽  
Vol 80 (22) ◽  
Author(s):  
Yiming Mao ◽  
Deborah Simon Mwakapesa ◽  
Kaibin Xu ◽  
Chen Lei ◽  
Youcun Liu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document