A Robust Stability Region-Based Decentralized PI Controller for a Multivariable Liquid Level System

2021 ◽  
pp. 1-8
Author(s):  
Soumya Ranjan Mahapatro ◽  
Bidyadhar Subudhi
2019 ◽  
Vol 8 (3) ◽  
pp. 2783-2789

The PI controller design for a liquid level system using the weighted geometric center method is discussed. Every real-time process have dead time. This dead time leads to the generation of oscillation in the system response. The oscillation generated due to dead time introduces instability in system performance. This paper presents a tuning method based on calculating a geometric center in the stability region for a higher order system. In this, the stability region calculated by plotting (Kp , Ki )-plane based on boundary locus stability technique. Further centre point computed in the stability locus by a geometric center method. This center point will provide Kp , Ki value for tuning the PI controller. The First Order Plus Dead Time (FOPDT) process considered to elaborate the method for computing the tuning parameters. A nonlinear time-delay system and a plant having time-delay response are controlled in simulation. The performance of the newly obtained PI controller based on weighted geometric center method is compared with the existing results to show the usefulness of the control scheme. Moreover, disturbance rejection ability of the newly obtained PI controller based on weighted geometric center method is demonstrated by applying disturbances. In addition, the designed controller implemented using Siemens DCS PCS7 V8.1 platform.


2009 ◽  
Vol 3 (11) ◽  
Author(s):  
M. Vijayakarthick ◽  
S. Sathishbabu ◽  
P.K. Bhaba

2016 ◽  
Vol 19 (2) ◽  
pp. 692-707 ◽  
Author(s):  
Feng Zhou ◽  
Hui Peng ◽  
Xiaoyong Zeng ◽  
Xiaoying Tian ◽  
Jun Wu

2020 ◽  
Vol 2020 ◽  
pp. 1-22 ◽  
Author(s):  
Xiangxiang Meng ◽  
Haisheng Yu ◽  
Herong Wu ◽  
Tao Xu

A novel method of disturbance observer-based integral backstepping control is proposed for the two-tank liquid level system with external disturbances. The problem of external disturbances can be settled in this paper. Firstly, the mathematical model of the two-tank liquid level system is established based on fluid mechanics and principle of mass conservation. Secondly, an integral backstepping control strategy is designed in order to ensure liquid level tracking performance by making the tracking errors converge to zero in finite time. Thirdly, a disturbance observer is designed for the two-tank liquid level system with external disturbances. Finally, the validity of the proposed method is verified by simulation and experiment. By doing so, the simulation and experimental results prove that the scheme of disturbance observer-based integral backstepping control strategy can suppress external disturbances more effective than the disturbance observer-based sliding mode control method and has better dynamic and steady performance of the two-tank liquid level system.


Sign in / Sign up

Export Citation Format

Share Document