Teaching–learning-based optimization for economic load dispatch

Author(s):  
Rasool Ghanizadeh ◽  
Seyed Majid Hojber kalali ◽  
Hatef Farshi
Author(s):  
Sumit Banerjee ◽  
Chandan Chanda ◽  
Deblina Maity

This article presents a novel improved teaching learning based optimization (I-TLBO) technique to solve economic load dispatch (ELD) problem of the thermal plant without considering transmission losses. The proposed methodology can take care of ELD problems considering practical nonlinearities such as ramp rate limit, prohibited operating zone and valve point loading. The objective of economic load dispatch is to determine the optimal power generation of the units to meet the load demand, such that the overall cost of generation is minimized, while satisfying different operational constraints. I-TLBO is a recently developed evolutionary algorithm based on two basic concepts of education namely teaching phase and learning phase. The effectiveness of the proposed algorithm has been verified on test system with equality and inequality constraints. Compared with the other existing techniques demonstrates the superiority of the proposed algorithm.


2014 ◽  
Vol 5 (4) ◽  
pp. 1-16 ◽  
Author(s):  
Sk Md Ali Bulbul ◽  
Provas Kumar Roy

Economic load dispatch (ELD) is a process of calculating real power dispatch by satisfying a set of constraints such a way as fuel cost can be minimized. Inclusion of the effect of valve-points and prohibited operation zones (POZs) in the cost functions make ELD problem a non-linear and non-convex one. For solving ELD in power system a newly proposed evolutionary technique namely adaptive teaching learning based optimization (ATLBO) is presented in this article. TLBO mimics the influence of a teacher on students in a classroom environment by social interaction. ATLBO is an improved version of TLBO which makes TLBO faster and more robust. An adaptive dynamic parameter control mechanism is adopted by the proposed ATLBO algorithm to determine the suitable parameter settings for teaching and learning phases of TLBO algorithm. The proposed ATLBO algorithm is tested in three different cases like 10-unit, 40-unit, and 80-unit systems. A comparison of numerical results with other well established techniques reveals optimization superiority of the proposed scheme both in quality of solution and computational efficiency.


This chapter introduces various evolutionary algorithms, namely grey wolf optimization (GWO), teaching-learning-based optimization (TLBO), biogeography-based optimization (BBO), krill herd algorithm (KHA), chemical reaction optimization (CRO) algorithms, for solving the economic load dispatch (ELD) problem of various power systems. To demonstrate the superiority of the proposed approaches in solving non-convex, non-linear and constrained ELD problem, the aforesaid approaches are implemented on 10-unit, 15-unit, 40-unit, 80-unit, and 140-unit test systems. It is observed from the simulation results that HCRO exhibits significantly better performance in terms of solution quality and convergence speed for all the cases compared to other discussed algorithms. Furthermore, the statistical results confirm the robustness of the proposed HCRO algorithm.


Author(s):  
Sarat Chandra Nayak ◽  
Subhranginee Das ◽  
Mohammad Dilsad Ansari

Background and Objective: Stock closing price prediction is enormously complicated. Artificial Neural Networks (ANN) are excellent approximation algorithms applied to this area. Several nature-inspired evolutionary optimization techniques are proposed and used in the literature to search the optimum parameters of ANN based forecasting models. However, most of them need fine-tuning of several control parameters as well as algorithm specific parameters to achieve optimal performance. Improper tuning of such parameters either leads toward additional computational cost or local optima. Methods: Teaching Learning Based Optimization (TLBO) is a newly proposed algorithm which does not necessitate any parameters specific to it. The intrinsic capability of Functional Link Artificial Neural Network (FLANN) to recognize the multifaceted nonlinear relationship present in the historical stock data made it popular and got wide applications in the stock market prediction. This article presents a hybrid model termed as Teaching Learning Based Optimization of Functional Neural Networks (TLBO-FLN) by combining the advantages of both TLBO and FLANN. Results and Conclusion: The model is evaluated by predicting the short, medium, and long-term closing prices of four emerging stock markets. The performance of the TLBO-FLN model is measured through Mean Absolute Percentage of Error (MAPE), Average Relative Variance (ARV), and coefficient of determination (R2); compared with that of few other state-of-the-art models similarly trained and found superior.


Sign in / Sign up

Export Citation Format

Share Document