Dual-Frequency and Broadband Circular Patch Antennas With a Monopole-Type Pattern Based on Epsilon-Negative Transmission Line

2012 ◽  
Vol 11 ◽  
pp. 442-445 ◽  
Author(s):  
Quanwen Hou ◽  
Hangfei Tang ◽  
Yahong Liu ◽  
Xiaopeng Zhao
2013 ◽  
Vol 55 (10) ◽  
pp. 2393-2398 ◽  
Author(s):  
Quanwen Hou ◽  
Hangfei Tang ◽  
Yahong Liu ◽  
Xiaopeng Zhao

Author(s):  
Kim Huat Yeap

This chapter elaborates in detail on the microstrip patch antenna, which is widely utilized in the receivers of radio telescopes, as well as in the wireless communication industry today. Several models have been developed to analyze and design the patch antennas. The three most common ones are the transmission line model, the cavity model, and the Method of Moments model. Apart from this, the important parameters used in characterizing the patch antenna are also covered, which are its gain, efficiency, directivity, radiation pattern, return loss, bandwidth, and polarization. This is followed by the introduction of the radiation regions, which are basically classified as the Fresnel region and the Fraunhofer region. Finally, the dual-frequency microstrip patch antenna is introduced. Three popular approaches adopted for the design are orthogonal-mode polarization, multi-layer patching, and reactive loading.


2020 ◽  
Vol 3 (4) ◽  
pp. 42
Author(s):  
Albert Sabban

The development of compact passive and active wearable circular patch metamaterials antennas for communication, Internet of Things (IoT) and biomedical systems is presented in this paper. Development of compact efficient low-cost wearable antennas are one of the most significant challenges in development of wearable communication, IoT and medical systems. Moreover, the advantage of an integrated compact low-cost feed network is attained by integrating the antenna feed network with the antennas on the same printed board. The efficiency of communication systems may be increased by using efficient passive and active antennas. The system dynamic range may be improved by connecting amplifiers to the printed antenna feed line. Design, design considerations, computed and measured results of wearable circular patch meta-materials antennas with high efficiency for 5G, IoT and biomedical applications are presented in this paper. The circular patch antennas electrical parameters on the human body were analyzed by using commercial full-wave software. The circular patch metamaterial wearable antennas are compact and flexible. The directivity and gain of the antennas with Circular Split-Ring Resonators (CSRR) is higher by 2.5dB to 3dB than the antennas without CSRR. The resonant frequency of the antennas without CSRR is higher by 6% to 9% than the antennas with CSRR. The computed and measured bandwidth of the stacked circular patch wearable antenna with CSRR for IoT and medical applications is around 12%, for S11 lover than −6dB. The gain of the circular patch wearable antenna with CSRR is around 8dBi.


Sign in / Sign up

Export Citation Format

Share Document