Multiconductor Transmission Line Model for an Antenna With High-Impedance Ground Plane

2020 ◽  
Vol 19 (12) ◽  
pp. 2097-2101
Author(s):  
Saber Soltani ◽  
Joseph Dusenbury ◽  
Kiersten C. Kerby-Patel
2021 ◽  
Author(s):  
BUDHADEB MAITY ◽  
SISIR KUMAR NAYAK

Abstract This article presents a structure of coplanar waveguide (CPW)-fed star-shaped monopole antenna (SSMA) with a pair of quarter-circular-slit (QCS) and partly-hexagonal-ring-slit (PHRS) defected ground structure. By inserting a pair of QCS and PHRS on the rectangular ground plane, an excellent impedance bandwidth is achieved i.e., 139 % (from 2.2--12.21 GHz). The dimension of the SSMA is about 0.286λ l ×0.216λ l mm 2 , where λ l is the wavelength in free space at the lowest operating frequency i.e, 2.2 GHz. The transmission line model (TLM) of the SSMA is presented and it shows the antenna behavior based on the effect of each element. It is observed that the characteristics of the TLM model are close to the simulation result using the CST simulator. From the results, it is observed that the proposed ultra-wideband (UWB) antenna close to omnidirectional radiation patterns and suitable for UWB Applications.


Author(s):  
Nandan Bhattacharyya ◽  
Jawad Yaseen Siddiqui

The microstrip antenna (MSA) consists of a dielectric substrate in between a metallic conducting patch and a ground plane. The most common forms of the MSA are the rectangular and circular patch MSAs. There are several microstrip antenna analysis methods. The most popular models are transmission-line model, cavity model, method of moments, FDTD method, and finite element method. The transmission-line model is the simplest of these methods, and it provides good physical insight but is less accurate. The cavity model is more accurate compared to the transmission-line model, but cavity model is more complex. Though cavity model gives good physical insight, it is rather difficult to model coupling. The full-wave models (which include primarily integral equations/moment method) are very accurate, very versatile, but they are the most complex models and usually give less physical insight. This chapter explores the microstrip antenna.


Sign in / Sign up

Export Citation Format

Share Document