Low complexity algorithms for transmit antenna selection in cognitive MIMO system

Author(s):  
Muhammad Waheed ◽  
Anni Cai
2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Peng Wei ◽  
Lu Yin ◽  
Yue Xiao ◽  
Xu He ◽  
Shaoqian Li

Transmit antenna selection (TAS) is an efficient way for improving the system performance of spatial modulation (SM) systems. However, in the case of large-scale multiple-input multiple-output (MIMO) configuration, the computational complexity of TAS in large-scale SM will be extremely high, which prohibits the application of TAS-SM in a real large-scale MIMO system for future 5G wireless communications. For solving this problem, in this paper, two novel low-complexity TAS schemes, named as norm-angle guided subset division (NAG-SD) and threshold-based NAG-SD ones, are proposed to offer a better tradeoff between computational complexity and system performance. Simulation results show that the proposed schemes can achieve better performance than traditional TAS schemes, while effectively reducing the computational complexity in large-scale spatial modulation systems.


2008 ◽  
Vol 17 (02) ◽  
pp. 253-262
Author(s):  
JIANGUO LIU ◽  
LUXI YANG

For the sake of reducing the hardware cost of multiple RF chains and the complexity for spatial multiplexing systems, in this paper a novel low-complexity transmit antenna selection criterion is proposed for V-BLAST system with MMSE OSIC detection. Based on MMSE extension of V-BLAST with sorted QR decomposition, an intuitional performance analysis of each sub-stream for MMSE V-BLAST transmission is done, and a new solution to the transmit antenna selection problem is suggested. Unlike most of the existing works, the proposed algorithm synthetically considers the impacts of detection order, interference cancellation, and noise amplification. Theoretical analysis and simulation results show that the proposed algorithm achieves well both in outage capacity and in symbol error rate performance with low computational complexity.


2015 ◽  
Vol 51 (19) ◽  
pp. 1548-1550 ◽  
Author(s):  
Yue Xiao ◽  
Lu Yin ◽  
Yu Wang ◽  
Lei Li ◽  
Wei Xiang

2012 ◽  
Vol 468-471 ◽  
pp. 355-359
Author(s):  
You Yan Zhang ◽  
Shu Yue Hong

The antenna diversity based on log-likelihood ratio (LLR) is better than that based on signal-to-noise ratio (SNR) in bit error rate performance for MIMO systems. Thus in this paper, we present a novel transmit antenna selection scheme based on bit log-likelihood ratio when the Alamouti code is employed .Then the BER expressions of application based on Bit-LLR (BLLR) for MPSK and MQAM modulation with Gray code are derived. The simulation results show that the new scheme based on BLLR is superior to SNR. With the increase of the transmit antennas, the performance of system is improved significantly. Furthermore, the diversity order is the same as that of the full complexity systems.


Sign in / Sign up

Export Citation Format

Share Document