Unsupervised Object-Based Change Detection via a Weibull Mixture Model-Based Binarization for High-Resolution Remote Sensing Images

2018 ◽  
Vol 15 (1) ◽  
pp. 63-67 ◽  
Author(s):  
Tianjun Wu ◽  
Jiancheng Luo ◽  
Jianwu Fang ◽  
Jianghong Ma ◽  
Xueli Song
2019 ◽  
Vol 8 (4) ◽  
pp. 189 ◽  
Author(s):  
Chi Zhang ◽  
Shiqing Wei ◽  
Shunping Ji ◽  
Meng Lu

The study investigates land use/cover classification and change detection of urban areas from very high resolution (VHR) remote sensing images using deep learning-based methods. Firstly, we introduce a fully Atrous convolutional neural network (FACNN) to learn the land cover classification. In the FACNN an encoder, consisting of full Atrous convolution layers, is proposed for extracting scale robust features from VHR images. Then, a pixel-based change map is produced based on the classification map of current images and an outdated land cover geographical information system (GIS) map. Both polygon-based and object-based change detection accuracy is investigated, where a polygon is the unit of the GIS map and an object consists of those adjacent changed pixels on the pixel-based change map. The test data covers a rapidly developing city of Wuhan (8000 km2), China, consisting of 0.5 m ground resolution aerial images acquired in 2014, and 1 m ground resolution Beijing-2 satellite images in 2017, and their land cover GIS maps. Testing results showed that our FACNN greatly exceeded several recent convolutional neural networks in land cover classification. Second, the object-based change detection could achieve much better results than a pixel-based method, and provide accurate change maps to facilitate manual urban land cover updating.


Sensors ◽  
2017 ◽  
Vol 17 (7) ◽  
pp. 1470 ◽  
Author(s):  
Fukun Bi ◽  
Jing Chen ◽  
Yin Zhuang ◽  
Mingming Bian ◽  
Qingjun Zhang

2021 ◽  
Vol 13 (22) ◽  
pp. 4528
Author(s):  
Xin Yang ◽  
Lei Hu ◽  
Yongmei Zhang ◽  
Yunqing Li

Remote sensing image change detection (CD) is an important task in remote sensing image analysis and is essential for an accurate understanding of changes in the Earth’s surface. The technology of deep learning (DL) is becoming increasingly popular in solving CD tasks for remote sensing images. Most existing CD methods based on DL tend to use ordinary convolutional blocks to extract and compare remote sensing image features, which cannot fully extract the rich features of high-resolution (HR) remote sensing images. In addition, most of the existing methods lack robustness to pseudochange information processing. To overcome the above problems, in this article, we propose a new method, namely MRA-SNet, for CD in remote sensing images. Utilizing the UNet network as the basic network, the method uses the Siamese network to extract the features of bitemporal images in the encoder separately and perform the difference connection to better generate difference maps. Meanwhile, we replace the ordinary convolution blocks with Multi-Res blocks to extract spatial and spectral features of different scales in remote sensing images. Residual connections are used to extract additional detailed features. To better highlight the change region features and suppress the irrelevant region features, we introduced the Attention Gates module before the skip connection between the encoder and the decoder. Experimental results on a public dataset of remote sensing image CD show that our proposed method outperforms other state-of-the-art (SOTA) CD methods in terms of evaluation metrics and performance.


Sign in / Sign up

Export Citation Format

Share Document