Magnitude Monadic Logic over Words and the Use of Relative Internal Set Theory

Author(s):  
Thomas Colcombet
Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2048
Author(s):  
Ileana Ruxandra Badea ◽  
Carmen Elena Mocanu ◽  
Florin F. Nichita ◽  
Ovidiu Păsărescu

The purpose of this paper is to promote new methods in mathematical modeling inspired by neuroscience—that is consciousness and subconsciousness—with an eye toward artificial intelligence as parts of the global brain. As a mathematical model, we propose topoi and their non-standard enlargements as models, due to the fact that their logic corresponds well to human thinking. For this reason, we built non-standard analysis in a special class of topoi; before now, this existed only in the topos of sets (A. Robinson). Then, we arrive at the pseudo-particles from the title and to a new axiomatics denoted by Intuitionistic Internal Set Theory (IIST); a class of models for it is provided, namely, non-standard enlargements of the previous topoi. We also consider the genetic–epigenetic interplay with a mathematical introduction consisting of a study of the Yang–Baxter equations with new mathematical results.


Axioms ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 329
Author(s):  
Saharon Shelah

We prove some results in set theory as applied to general topology and model theory. In particular, we study ℵ1-collectionwise Hausdorff, Chang Conjecture for logics with Malitz-Magidor quantifiers and monadic logic of the real line by odd/even Cantor sets.


1995 ◽  
Vol 60 (1) ◽  
pp. 318-324 ◽  
Author(s):  
V. Kanovei

AbstractWe prove that in IST, Nelson's internal set theory, the Uniqueness and Collection principles, hold for all (including external) formulas. A corollary of the Collection theorem shows that in IST there are no definable mappings of a set X onto a set Y of greater (not equal) cardinality unless both sets are finite and #(Y) ≤ n #(X) for some standard n. Proofs are based on a rather general technique which may be applied to other nonstandard structures. In particular we prove that in a nonstandard model of PA, Peano arithmetic, every hyperinteger uniquely definable by a formula of the PA language extended by the predicate of standardness, can be defined also by a pure PA formula.


Sign in / Sign up

Export Citation Format

Share Document