Uniqueness, collection, and external collapse of cardinals in IST and models of Peano arithmetic

1995 ◽  
Vol 60 (1) ◽  
pp. 318-324 ◽  
Author(s):  
V. Kanovei

AbstractWe prove that in IST, Nelson's internal set theory, the Uniqueness and Collection principles, hold for all (including external) formulas. A corollary of the Collection theorem shows that in IST there are no definable mappings of a set X onto a set Y of greater (not equal) cardinality unless both sets are finite and #(Y) ≤ n #(X) for some standard n. Proofs are based on a rather general technique which may be applied to other nonstandard structures. In particular we prove that in a nonstandard model of PA, Peano arithmetic, every hyperinteger uniquely definable by a formula of the PA language extended by the predicate of standardness, can be defined also by a pure PA formula.

1982 ◽  
Vol 47 (2) ◽  
pp. 416-422 ◽  
Author(s):  
L. A. S. Kirby

Flipping properties were introduced in set theory by Abramson, Harrington, Kleinberg and Zwicker [1]. Here we consider them in the context of arithmetic and link them with combinatorial properties of initial segments of nonstandard models studied in [3]. As a corollary we obtain independence resutls involving flipping properties.We follow the notation of the author and Paris in [3] and [2], and assume some knowledge of [3]. M will denote a countable nonstandard model of P (Peano arithmetic) and I will be a proper initial segment of M. We denote by N the standard model or the standard part of M. X ↑ I will mean that X is unbounded in I. If X ⊆ M is coded in M and M ≺ K, let X(K) be the subset of K coded in K by the element which codes X in M. So X(K) ⋂ M = X.Recall that M ≺IK (K is an I-extension of M) if M ≺ K and for some c∈K,In [3] regular and strong initial segments are defined, and among other things it is shown that I is regular if and only if there exists an I-extension of M.


Mathematics ◽  
2021 ◽  
Vol 9 (17) ◽  
pp. 2048
Author(s):  
Ileana Ruxandra Badea ◽  
Carmen Elena Mocanu ◽  
Florin F. Nichita ◽  
Ovidiu Păsărescu

The purpose of this paper is to promote new methods in mathematical modeling inspired by neuroscience—that is consciousness and subconsciousness—with an eye toward artificial intelligence as parts of the global brain. As a mathematical model, we propose topoi and their non-standard enlargements as models, due to the fact that their logic corresponds well to human thinking. For this reason, we built non-standard analysis in a special class of topoi; before now, this existed only in the topos of sets (A. Robinson). Then, we arrive at the pseudo-particles from the title and to a new axiomatics denoted by Intuitionistic Internal Set Theory (IIST); a class of models for it is provided, namely, non-standard enlargements of the previous topoi. We also consider the genetic–epigenetic interplay with a mathematical introduction consisting of a study of the Yang–Baxter equations with new mathematical results.


1989 ◽  
Vol 30 (1) ◽  
pp. 68-73 ◽  
Author(s):  
E. I. Gordon
Keyword(s):  

1994 ◽  
Vol 59 (3) ◽  
pp. 1012-1021
Author(s):  
Arthur D. Grainger

AbstractLet X be a set, and let be the superstructure of X, where X0 = X and is the power set of X) for n ∈ ω. The set X is called a flat set if and only if for each x ∈ X, and x ∩ ŷ = ø for x, y ∈ X such that x ≠ y. where is the superstructure of y. In this article, it is shown that there exists a bijection of any nonempty set onto a flat set. Also, if is an ultrapower of (generated by any infinite set I and any nonprincipal ultrafilter on I), it is shown that is a nonstandard model of X: i.e., the Transfer Principle holds for and , if X is a flat set. Indeed, it is obvious that is not a nonstandard model of X when X is an infinite ordinal number. The construction of flat sets only requires the ZF axioms of set theory. Therefore, the assumption that X is a set of individuals (i.e., x ≠ ϕ and a ∈ x does not hold for x ∈ X and for any element a) is not needed for to be a nonstandard model of X.


1984 ◽  
Vol 49 (2) ◽  
pp. 425-436 ◽  
Author(s):  
Julia Knight ◽  
Alistair H. Lachlan ◽  
Robert I. Soare

Let PA be the theory of first order Peano arithmetic, in the language L with binary operation symbols + and ·. Let N be the theory of the standard model of PA. We consider countable models M of PA such that the universe ∣M∣ is ω. The degree of such a model M, denoted by deg(M), is the (Turing) degree of the atomic diagram of M. The results of this paper concern the degrees of models of N, but here in the Introduction, we shall give a brief survey of results about degrees of models of PA.Let D0 denote the set of degrees d such that there is a nonstandard model of M of PA with deg(M) = d. Here are some of the more easily stated results about D0.(1) There is no recursive nonstandard model of PA; i.e., 0 ∈ D0.This is a result of Tennenbaum [T].(2) There existsd ∈ D0such thatd ≤ 0′.This follows from the standard Henkin argument.(3) There existsd ∈ D0such thatd < 0′.Shoenfield [Sh1] proved this, using the Kreisel-Shoenfield basis theorem.(4) There existsd ∈ D0such thatd′ = 0′.Jockusch and Soare [JS] improved the Kreisel-Shoenfield basis theorem and obtained (4).(5) D0 = Dc = De, where Dc denotes the set of degrees of completions of PA and De the set of degrees d such that d separates a pair of effectively inseparable r.e. sets.Solovay noted (5) in a letter to Soare in which in answer to a question posed in [JS] he showed that Dc is upward closed.


2010 ◽  
Vol 75 (4) ◽  
pp. 1366-1382
Author(s):  
James H. Schmerl

AbstractBounded lattices (that is lattices that are both lower bounded and upper bounded) form a large class of lattices that include all distributive lattices, many nondistributive finite lattices such as the pentagon lattice N5. and all lattices in any variety generated by a finite bounded lattice. Extending a theorem of Paris for distributive lattices, we prove that if L is an ℵ0-algebraic bounded lattice, then every countable nonstandard model of Peano Arithmetic has a cofinal elementary extension such that the interstructure lattice Lt(/) is isomorphic to L.


1990 ◽  
Vol 55 (1) ◽  
pp. 194-206 ◽  
Author(s):  
Robert S. Lubarsky

The program of reverse mathematics has usually been to find which parts of set theory, often used as a base for other mathematics, are actually necessary for some particular mathematical theory. In recent years, Slaman, Groszek, et al, have given the approach a new twist. The priority arguments of recursion theory do not naturally or necessarily lead to a foundation involving any set theory; rather, Peano Arithmetic (PA) in the language of arithmetic suffices. From this point, the appropriate subsystems to consider are fragments of PA with limited induction. A theorem in this area would then have the form that certain induction axioms are independent of, necessary for, or even equivalent to a theorem about the Turing degrees. (See, for examples, [C], [GS], [M], [MS], and [SW].)As go the integers so go the ordinals. One motivation of α-recursion theory (recursion on admissible ordinals) is to generalize classical recursion theory. Since induction in arithmetic is meant to capture the well-foundedness of ω, the corresponding axiom in set theory is foundation. So reverse mathematics, even in the context of a set theory (admissibility), can be changed by the influence of reverse recursion theory. We ask not which set existence axioms, but which foundation axioms, are necessary for the theorems of α-recursion theory.When working in the theory KP – Foundation Schema (hereinafter called KP−), one should really not call it α-recursion theory, which refers implicitly to the full set of axioms KP. Just as the name β-recursion theory refers to what would be α-recursion theory only it includes also inadmissible ordinals, we call the subject of study here γ-recursion theory. This answers a question by Sacks and S. Friedman, “What is γ-recursion theory?”


2020 ◽  
Author(s):  
Vasil Penchev

<div>Husserl’s phenomenology is what is used, and then the conception of “bracketing reality” is modelled to generalize Peano arithmetic in its relation to set theory in the foundation of mathematics. The obtained model is equivalent to the generalization of Peano arithmetic by means of replacing the axiom of induction with that of transfinite induction.</div><div><br></div><div>A comparison to Mach’s doctrine is used to be revealed the fundamental and philosophical reductionism of Husserl’s phenomenology leading to a kind of Pythagoreanism in the final analysis</div>


2020 ◽  
Author(s):  
Vasil Dinev Penchev

A principle, according to which any scientific theory can be mathematized, is investigated. Social science, liberal arts, history, and philosophy are meant first of all. That kind of theory is presupposed to be a consistent text, which can be exhaustedly represented by a certain mathematical structure constructively. In thus used, the term “theory” includes all hypotheses as yet unconfirmed as already rejected. The investigation of the sketch of a possible proof of the principle demonstrates that it should be accepted rather a metamathematical axiom about the relation of mathematics and reality.The main statement is formulated as follows: Any scientific theory admits isomorphism to some mathematical structure in a way constructive (that is not as a proof of “pure existence” in a mathematical sense).Its investigation needs philosophical means. Husserl’s phenomenology is what is used, and then the conception of “bracketing reality” is modelled to generalize Peano arithmetic in its relation to set theory in the foundation of mathematics. The obtained model is equivalent to the generalization of Peano arithmetic by means of replacing the axiom of induction with that of transfinite induction.The sketch of the proof is organized in five steps: (1) a generalization of epoché; (2) involving transfinite induction in the transition between Peano arithmetic and set theory; (3) discussing the finiteness of Peano arithmetic; (4) applying transfinite induction to Peano arithmetic; (5) discussing an arithmetical model of reality.Accepting or rejecting the principle, two kinds of mathematics appear differing from each other by its relation to reality. Accepting the principle, mathematics has to include reality within itself in a kind of Pythagoreanism. These two kinds are called in paper correspondingly Hilbert mathematics and Gödel mathematics. The sketch of the proof of the principle demonstrates that the generalization of Peano arithmetic as above can be interpreted as a model of Hilbert mathematics into Gödel mathematics therefore showing that the former is not less consistent than the latter, and the principle is an independent axiom.The present paper follows a pathway grounded on Husserl’s phenomenology and “bracketing reality” to achieve the generalized arithmetic necessary for the principle to be founded in alternative ontology, in which there is no reality external to mathematics: reality is included within mathematics. That latter mathematics is able to self-found itself and can be called Hilbert mathematics in honour of Hilbert’s program for self-founding mathematics on the base of arithmetic.The principle of universal mathematizability is consistent to Hilbert mathematics, but not to Gödel mathematics. Consequently, its validity or rejection would resolve the problem which mathematics refers to our being; and vice versa: the choice between them for different reasons would confirm or refuse the principle as to the being.An information interpretation of Hilbert mathematics is involved. It is a kind of ontology of information. The Schrödinger equation in quantum mechanics is involved to illustrate that ontology. Thus the problem which of the two mathematics is more relevant to our being (rather than reality for reality is external only to Gödel mathematics) is discussed again in a new wayA few directions for future work can be: a rigorous formal proof of the principle as an independent axiom; the further development of information ontology consistent to both kinds of mathematics, but much more natural for Hilbert mathematics; the development of the information interpretation of quantum mechanics as a mathematical one for information ontology and thus Hilbert mathematics; the description of consciousness in terms of information ontology.


Sign in / Sign up

Export Citation Format

Share Document