Security of Grouping-Proof Authentication Protocol for Distributed RFID Systems

2018 ◽  
Vol 7 (2) ◽  
pp. 254-257 ◽  
Author(s):  
Da-Zhi Sun ◽  
Yi Mu
Author(s):  
Yubao Hou ◽  
Hua Liang ◽  
Juan liu

In the traditional RFID (Radio Frequency IDentification) system, a secure wired channel communication is used between the reader and the server. The newly produced mobile RFID system is different from the traditional RFID system, the communication between the reader and the server is based on a wireless channel, and the authentication protocol is suitable for traditional RFID systems, but it cannot be used in mobile RFID systems. To solve this problem, a mutual authentication protocol MSB (Most Significant Bit) for super lightweight mobile radio frequency identification system is proposed based on bit replacement operation. MSB is a bitwise operation to encrypt information and reduce the computational load of communication entities. Label, readers, and servers authenticate first and then communicate, MSB may be used to resistant to common attacks. The security analysis of the protocol shows that the protocol has high security properties, the performance analysis of the protocol shows that the protocol has the characteristics of low computational complexity, the formal analysis of the protocol based on GNY logic Gong et al. (1990) provides a rigorous reasoning proof process for the protocol.


Sensors ◽  
2019 ◽  
Vol 19 (21) ◽  
pp. 4752 ◽  
Author(s):  
Khwaja Mansoor ◽  
Anwar Ghani ◽  
Shehzad Chaudhry ◽  
Shahaboddin Shamshirband ◽  
Shahbaz Ghayyur ◽  
...  

Despite the many conveniences of Radio Frequency Identification (RFID) systems, the underlying open architecture for communication between the RFID devices may lead to various security threats. Recently, many solutions were proposed to secure RFID systems and many such systems are based on only lightweight primitives, including symmetric encryption, hash functions, and exclusive OR operation. Many solutions based on only lightweight primitives were proved insecure, whereas, due to resource-constrained nature of RFID devices, the public key-based cryptographic solutions are unenviable for RFID systems. Very recently, Gope and Hwang proposed an authentication protocol for RFID systems based on only lightweight primitives and claimed their protocol can withstand all known attacks. However, as per the analysis in this article, their protocol is infeasible and is vulnerable to collision, denial-of-service (DoS), and stolen verifier attacks. This article then presents an improved realistic and lightweight authentication protocol to ensure protection against known attacks. The security of the proposed protocol is formally analyzed using Burrows Abadi-Needham (BAN) logic and under the attack model of automated security verification tool ProVerif. Moreover, the security features are also well analyzed, although informally. The proposed protocol outperforms the competing protocols in terms of security.


2016 ◽  
Vol 9 (18) ◽  
pp. 5581-5590 ◽  
Author(s):  
Samad Rostampour ◽  
Nasour Bagheri ◽  
Mehdi Hosseinzadeh ◽  
Ahmad Khademzadeh

Sign in / Sign up

Export Citation Format

Share Document