Charge-controlled electromechanical instability modeling of a dielectric plate actuator

Author(s):  
Sankalp Gour ◽  
Deepak Kumar ◽  
Vinod Yadav
1994 ◽  
Vol 37 (4) ◽  
pp. 335-337
Author(s):  
E. R. Golubyatnikova ◽  
M. I. Petelin
Keyword(s):  

Antennas ◽  
2021 ◽  
Author(s):  
Yu. G. Belov ◽  
V. V. Biryukov ◽  
I. A. Egorov

The methods for measuring the parameters of dielectric materials of foil plates have been considered. It has been shown that for “non-destructive measurements” (i.e., without removing the metal foil from the dielectric plate), a method based on the excitation of electromagnetic oscillations in a rectangular plate considered as a resonator can be used. Based on the results of measurements of their resonant frequencies and Q-factors, the relative permittivity and the tangent of the dielectric loss angle of the material can be determined. The calculated relations obtained by the authors of the article in one of the early works using the electrodynamic model of a resonator with “magnetic walls” at the ends have been presented. The Q-factor of the resonator has been calculated by the perturbation method, taking into account the losses in the plate dielectric and metallization layers. The results of measurements for four samples from different dielectrics in the frequency range 200...1000 MHz have been presented. The experimental method has been described, in particular, the method of identifying the type of oscillation, the procedure for processing the measurement results. Due to the high sensitivity of the vector analyzer, measurements have been made with a possible small connection of the resonator (metallized plate) with the measuring circuit. This made it possible to minimize the influence of the coupling elements on the measured Qfactor of the oscillations and to consider this Q-factor close to its own. The presented results are in good agreement with the reference data for the materials. The conducted studies have shown the possibility of using a resonator model with “magnetic walls” at the ends for the analysis of electromagnetic oscillations in a foil dielectric plate and, accordingly, using the relations obtained in this case to determine the parameters of the dielectric plate. The conditions for using this model are the small thickness of the plate in comparison with its transverse dimensions and relatively low operating frequencies. The method, which is based on the calculated ratios of the electrodynamic model of the resonator with “magnetic” walls at the ends, provides a sufficiently high accuracy of determining the relative permittivity of the plate material, which led to the use of it (the method) in practice to control the parameters of foil dielectric plates intended for the manufacture of microwave and UHF-band microcircuits. The studies, the results of which have been presented in this paper, allow us to conclude that this method can also be recommended for determining the tangent of the dielectric loss angle of the plate material.


Author(s):  
Xiongfei Lv ◽  
Liwu Liu ◽  
Jinsong Leng ◽  
Yanju Liu ◽  
Shengqiang Cai

When a dielectric elastomer (DE) balloon is subjected to electromechanical loading, instability may happen. In recent experiments, it has been shown that the instability configuration of a DE balloon under electromechanical loading can be very different from that only subjected to mechanical load. It has also been observed in the experiments that the electromechanical instability phenomena of a DE balloon can be highly time-dependent. In this article, we adopt a nonlinear viscoelastic model for the DE membrane to investigate the time-dependent electromechanical instability of a DE balloon. Using the model, we show that under a constant electromechanical loading, a DE balloon may gradually evolve from a convex shape to a non-convex shape with bulging out in the centre, and compressive hoop stress can also gradually develop the balloon, resulting in wrinkles as observed in the experiments. We have further shown that the snap-through instability phenomenon of the DE balloon also greatly depends on the ramping rate of the applied voltage.


Sign in / Sign up

Export Citation Format

Share Document