electromechanical instability
Recently Published Documents


TOTAL DOCUMENTS

51
(FIVE YEARS 6)

H-INDEX

17
(FIVE YEARS 2)

Author(s):  
S. M. J. Hosseini ◽  
J. Torabi ◽  
R. Ansari ◽  
A. Zabihi

This paper is concerned with studying the size-dependent nonlinear dynamic pull-in instability and vibration of functionally graded Euler–Bernoulli nanobeams (FG-EBNs) with the von Kármán hypothesis based on the nonlocal strain gradient theory (NLSGT). To this end, the partial differential equation (PDE) is developed by Hamilton’s principle considering the intermolecular, fringing field and electrostatic nonlinear forces. Then, the Galerkin method (GM) is utilized to acquire the ordinary differential equation (ODE) and the results are obtained with the help of an analytical approach called the homotopy analysis method (HAM). To verify the outcome of this study, the nonlinear and linear frequencies obtained are compared with those of the literature. Consequently, the pull-in voltage of the FG nanobeam is obtained and the variations of nonlinear and linear frequencies are discussed in detail. Also, the effects of initial amplitude, electrostatic force, length scale, nonlocal parameter, material gradient index and boundary condition (BC) on the electromechanical behavior of FG-EBNs are analyzed with the results commented.


2020 ◽  
Vol 2020 ◽  
pp. 1-16
Author(s):  
Ehsan Akrami-Nia ◽  
Hamid Ekhteraei-Toussi

Microbeams are key elements in most of the micro-electromechanical systems (MEMS). Electromechanical instability of microbeams in turn plays an important role in their applications. The shape and mechanical properties of microbeams dictate their functional characteristics. Focusing on their instability-based working mechanism, one can appreciate that viscoelasticity of MEMS materials cannot be neglected. Consequently, the analysis of instability in viscoelastic curved microbeams is an essential demand. In this research, assuming a clamped-clamped initially curved microbeam, the effects of viscoelastic behavior on the snap-through and pull-in instabilities are investigated. The standard inelastic linear solid model is used for the simulation of viscoelastic behavior. Integrodifferential governing equation of the curved viscoelastic microbeam is obtained by assuming modified couple stress theory and using Hamilton’s principle. By applying the Galerkin method, the obtained governing equation is discretized, converted to a nonlinear differential equation, and solved by MATLAB software. Through a quasi-static analysis, the voltage and location of snap-through and pull-in instabilities are identified. The effects of different viscoelastic parameters including the creep moduli and relaxation coefficient upon the snap-through and pull-in instabilities are investigated. The effects of different short- and long-term creeping characteristics of viscoelastic microbeam are studied and discussed in detail.


Author(s):  
Xiongfei Lv ◽  
Liwu Liu ◽  
Jinsong Leng ◽  
Yanju Liu ◽  
Shengqiang Cai

When a dielectric elastomer (DE) balloon is subjected to electromechanical loading, instability may happen. In recent experiments, it has been shown that the instability configuration of a DE balloon under electromechanical loading can be very different from that only subjected to mechanical load. It has also been observed in the experiments that the electromechanical instability phenomena of a DE balloon can be highly time-dependent. In this article, we adopt a nonlinear viscoelastic model for the DE membrane to investigate the time-dependent electromechanical instability of a DE balloon. Using the model, we show that under a constant electromechanical loading, a DE balloon may gradually evolve from a convex shape to a non-convex shape with bulging out in the centre, and compressive hoop stress can also gradually develop the balloon, resulting in wrinkles as observed in the experiments. We have further shown that the snap-through instability phenomenon of the DE balloon also greatly depends on the ramping rate of the applied voltage.


2019 ◽  
Vol 86 (6) ◽  
Author(s):  
Atul Kumar Sharma ◽  
Pramod Kumar ◽  
A. Singh ◽  
D. M. Joglekar ◽  
M. M. Joglekar

Electrically driven dielectric elastomers (DEs) suffer from an electromechanical instability (EMI) when the applied potential difference reaches a critical value. A majority of the past investigations address the mechanics of this operational instability by restricting the kinematics to homogeneous deformations. However, a DE membrane comprising both active and inactive electric regions undergoes inhomogeneous deformation, thus necessitating the solution of a complex boundary value problem. This paper reports the numerical and experimental investigation of such DE actuators with a particular emphasis on the EMI in quasistatic mode of actuation. The numerical simulations are performed using an in-house finite element framework developed based on the field theory of deformable dielectrics. Experiments are performed on the commercially available acrylic elastomer (VHB 4910) at varying levels of prestretch and proportions of the active to inactive areas. In particular, two salient features associated with the electromechanical response are addressed: the effect of the flexible boundary constraint and the locus of the dielectric breakdown point. To highlight the influence of the flexible boundary constraint, the estimates of the threshold value of potential difference on the onset of electromechanical instability are compared with the experimental observations and with those obtained using the lumped parameter models reported previously. Additionally, a locus of localized thinning, near the boundary of the active electric region, is identified using the numerical simulations and ascertained through the experimental observations. Finally, an approach based on the Airy stress function is suggested to justify the phenomenon of localized thinning leading to the dielectric breakdown.


2018 ◽  
Vol 85 (10) ◽  
Author(s):  
Yingxi Wang ◽  
Zhe Li ◽  
Lei Qin ◽  
George Caddy ◽  
Choon Hwai Yap ◽  
...  

Harnessing reversible snap-through of a dielectric elastomer (DE), which is a mechanism for large deformation provided by an electromechanical instability, for large-volume pumping has proven to be feasible. However, the output volume of snap-through pumping is drastically reduced by adverse pressure gradient, and large-volume pumping under high adverse pressure gradient by a DE pump has not been realized. In this paper, we propose a new mechanism of DE fluid pumping that can address this shortcoming by connecting DE pumps of different membrane stiffnesses serially in a pumping circuit and by harnessing synergistic interactions between neighboring pump units. We build a simple serial DE pump to verify the concept, which consists of two DE membranes. By adjusting the membrane stiffness appropriately, a synergistic effect is observed, where the snap-through of membrane 1 triggers the snap-through of membrane 2, ensuring that a large volume (over 70 ml/cycle) can be achieved over a wide range of large adverse pressure gradients. In comparison, the conventional single DE pump's pumping volume rapidly decreased beyond a low adverse pressure gradient of 0.196 kPa. At the pressure difference of 0.98 kPa, the serial DE pump's pumping volume is 4185.1% larger than that of the conventional DE pump. This pumping mechanism is customizable for various pressure ranges and enables a new approach to design DE-based soft pumping devices such as a DE total artificial heart, which requires large-volume pumping over a wide range of pressure difference.


2018 ◽  
Vol 32 (08) ◽  
pp. 1850089 ◽  
Author(s):  
Ali Koochi ◽  
Hossein Hosseini-Toudeshky ◽  
Mohamadreza Abadyan

Herein, a corrected theoretical model is proposed for modeling the static and dynamic behavior of electrostatically actuated narrow-width nanotweezers considering the correction due to finite dimensions, size dependency and surface energy. The Gurtin–Murdoch surface elasticity in conjunction with the modified couple stress theory is employed to consider the coupling effect of surface stresses and size phenomenon. In addition, the model accounts for the external force corrections by incorporating the impact of narrow width on the distribution of Casimir attraction, van der Waals (vdW) force and the fringing field effect. The proposed model is beneficial for the precise modeling of the narrow nanotweezers in nano-scale.


Sign in / Sign up

Export Citation Format

Share Document