frequency selective surface
Recently Published Documents





Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 640
Yi Lu ◽  
Juan Chen ◽  
Jianxing Li ◽  
Wenjing Xu

In high-power microwave applications, the electromagnetic-thermal effect of frequency selective surface (FSS) cannot be ignored. In this paper, the electromagnetic-thermal coupling effects of cross-slot FSS were studied. We used an equivalent circuit method and CST software to analyze the electromagnetic characteristics of cross-slot FSS. Then, we used multi-field simulation software COMSOL Multiphysics to study the thermal effect of the FSSs. To verify the simulation results, we used a horn antenna with a power of 20 W to radiate the FSSs and obtain the stable temperature distribution of the FSSs. By using simulations and experiments, it is found that the maximum temperature of the cross-slot FSS appears in the middle of the cross slot. It is also found that the FSS with a narrow slot has severer thermal effect than that with a wide slot. In addition, the effects of different incident angles on the temperature variation of FSS under TE and TM polarization were also studied. It is found that in TE polarization, with the increase in incident angle, the maximum stable temperature of FSS increases gradually. In TM polarization, with the increase in incident angle, the maximum stable temperature of FSS decreases gradually.

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 622
Nur Biha Mohamed Nafis ◽  
Mohamed Himdi ◽  
Mohamad Kamal A Rahim ◽  
Osman Ayop ◽  
Raimi Dewan

Acquiring an optically transparent feature on the wideband frequency selective surface (FSS), particularly for smart city applications (building window and transportation services) and vehicle windows, is a challenging task. Hence, this study assessed the performance of optically transparent mosaic frequency selective surfaces (MFSS) with a conductive metallic element unit cell that integrated Koch fractal and double hexagonal loop fabricated on a polycarbonate substrate. The opaque and transparent features of the MFSS were studied. While the study on opaque MFSS revealed the advantage of having wideband responses, the study on transparent MFSS was performed to determine the optical transparency application with wideband feature. To comprehend the MFSS design, the evolutionary influence of the unit cell on the performance of MFSS was investigated and discussed thoroughly in this paper. Both the opaque and transparent MFSS yielded wideband bandstop and bandpass responses with low cross-polarisation (−37 dB), whereas the angular stability was limited to only 25°. The transparent MFSS displayed high-level transparency exceeding 70%. Both the simulated and measured performance comparison exhibited good correlation for both opaque and transparent MFSS. The proposed transparent MFSS with wideband frequency response and low cross-polarisation features signified a promising filtering potential in multiple applications.

2022 ◽  
Vol 8 ◽  
Xinmin Fu ◽  
Ya Fan ◽  
Yajuan Han ◽  
Jiafu Wang ◽  
Zhuangzhuang Wang ◽  

The integration of the metasurface and antenna has brought new vitality to function integration and performance improvement for metasurfaces. In this study, we propose a radiation-scattering–integrated (RSI) design method of functional metasurfaces by incorporating antenna radiators into the substrates. The antenna radiators can also be considered as a band-stop frequency selective surface (FSS) embedded within the dielectric substrate, which adds up to the degree of freedom (DOF) in tailoring electromagnetic (EM) properties of the substrate. In this way, not only radiation function is added to the metasurfaces but also the original scattering-manipulation function is augmented. As an example, we apply this method to the design of a metasurface that can achieve a high radiation gain in-band and low-RCS out-of-band simultaneously. An antenna array was first designed, which uses circular patches as the radiators. Then, the antenna array was used as the substrate of a typical polarization conversion (PC) metasurface. The circular patch lies between the ground plane and the PC meta-atom, providing optimal electrical substrate thickness for PC at two separate bands. By adjusting structural parameters, the operating band of the antenna array can be made to lie in between the two PC bands. In this way, the metasurface can simultaneously possess high-gain radiation function in-band and high-efficiency PC function for RCS reduction out-of-band. A prototype was fabricated and measured. Both the simulated and measured results show that the metasurface can achieve satisfactory radiation gain in-band and significant RCS reduction out of band. This work provides an alternative method of designing multi-functional metasurfaces, which may find applications in smart skins and others.

2022 ◽  
Vol 70 (3) ◽  
pp. 6177-6187
Shahid Habib ◽  
Ghaffer Iqbal Kiani ◽  
Muhammad Fasih Uddin Butt ◽  
Syed Muzahir Abbas ◽  
Abdulah Jeza Aljohani ◽  

2022 ◽  
Vol 71 (2) ◽  
pp. 2869-2882
N. S. Ishak ◽  
F. C. Seman ◽  
N. Zainal ◽  
N. A. Awang

2022 ◽  
pp. 115262
Yuetang Wang ◽  
Cheng Huang ◽  
Jinqiang Peng ◽  
Liming Yuan ◽  
Yuzhuo Qi ◽  

Sign in / Sign up

Export Citation Format

Share Document