A Wireless Sensor System for Traffic Flow Detection based on Measurement of Earth's Magnetic Field Changes

Author(s):  
Alexander Fomin ◽  
Sylvia Braeunig
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Haji Said Fimbombaya ◽  
Nerey H. Mvungi ◽  
Ndyetabura Y. Hamisi ◽  
Hashimu U. Iddi

Traffic flow monitoring involves the capturing and dissemination of real-time traffic flow information for a road network. When a vehicle, a ferromagnetic object, travels along a road, it disturbs the ambient Earth’s magnetic field, causing its distortion. The resulting distortion carries vehicle signature containing traffic flow related information such as speed, count, direction, and classification. To extract such information in chaotic cities, a novel algorithm based on the resulting magnetic field distortion was developed using nonintrusive sensor localization. The algorithm extracts traffic flow information from resulting magnetic field distortions sensed by magnetic wireless sensor nodes located on the sides of the road. The model magnetic wireless sensor networks algorithm for local Earth’s magnetic field performance was evaluated through simulation using Dar es Salaam City traffic flow conditions. Simulation results for vehicular detection and count showed 93% and 87% success rates during normal and congested traffic states, respectively. Travel Time Index (TTI) was used as a congestion indicator, where different levels of congestion were evaluated depending on the traffic state with a performance of 87% and 88% success rates during normal and congested traffic flow, respectively.


Author(s):  
A. Soloviev ◽  
A. Khokhlov ◽  
E. Jalkovsky ◽  
A. Berezko ◽  
A. Lebedev ◽  
...  

2011 ◽  
Vol 12 (2) ◽  
pp. 1-9
Author(s):  
A. E. Berezko ◽  
A. V. Khokhlov ◽  
A. A. Soloviev ◽  
A. D. Gvishiani ◽  
E. A. Zhalkovsky ◽  
...  

1967 ◽  
Vol 20 (1) ◽  
pp. 101 ◽  
Author(s):  
KJW Lynn ◽  
J Crouchley

Results of a study at Brisbane of individual night-time sferics of known origin are described. A propagation attenuation minimum was observed in the 3-6 kHz range. The geographic distribution of sferic types was also examined. Apparent propagation asynunetries were observed, since sferics were detected at greater ranges to the west than to the east at 10 kHz, whilst the number of tweek-sferics arising from the east was about four times that arising from the west. Comparison with European studies suggest that these asymmetries are general. These results are then " interpreted in terms of an ionospheric reflection cgefficient which is a function of the effective angle of incidence of the wave on the ionosphere and of orientation with respect to the Earth's magnetic field within the ionosphere.


2019 ◽  
Vol 287 ◽  
pp. 10-20 ◽  
Author(s):  
Kazuhiro Okayama ◽  
Nobutatsu Mochizuki ◽  
Yutaka Wada ◽  
Yo-ichiro Otofuji

2004 ◽  
Vol 218 (1-2) ◽  
pp. 197-213 ◽  
Author(s):  
Christoph Heunemann ◽  
David Krása ◽  
Heinrich C Soffel ◽  
Evguenij Gurevitch ◽  
Valerian Bachtadse

2006 ◽  
Vol 182 (2) ◽  
pp. 343-347 ◽  
Author(s):  
Jeremy N. Robinson ◽  
Andrew Coy ◽  
Robin Dykstra ◽  
Craig D. Eccles ◽  
Mark W. Hunter ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document