Engineering changes in field modifiable architectures

Author(s):  
H. Saito ◽  
K. Seto ◽  
Y. Kojima ◽  
S. Komatsu ◽  
M. Fujita
Keyword(s):  
Author(s):  
J. Drucker ◽  
R. Sharma ◽  
J. Kouvetakis ◽  
K.H.J. Weiss

Patterning of metals is a key element in the fabrication of integrated microelectronics. For circuit repair and engineering changes constructive lithography, writing techniques, based on electron, ion or photon beam-induced decomposition of precursor molecule and its deposition on top of a structure have gained wide acceptance Recently, scanning probe techniques have been used for line drawing and wire growth of W on a silicon substrate for quantum effect devices. The kinetics of electron beam induced W deposition from WF6 gas has been studied by adsorbing the gas on SiO2 surface and measuring the growth in a TEM for various exposure times. Our environmental cell allows us to control not only electron exposure time but also the gas pressure flow and the temperature. We have studied the growth kinetics of Au Chemical vapor deposition (CVD), in situ, at different temperatures with/without the electron beam on highly clean Si surfaces in an environmental cell fitted inside a TEM column.


MicroRNA ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 64-69 ◽  
Author(s):  
KumChol Ri ◽  
Chol Kim ◽  
CholJin Pak ◽  
PhyongChol Ri ◽  
HyonChol Om

Background: Recent studies have attempted to elucidate the function of super enhancers by means of microRNAs. Although the functional outcomes of miR-1301 have become clearer, the pathways that regulate the expressions of miR-1301 remain unclear. Objective: The objective of this paper was to consider the pathway regulating expression of miR- 1301 and miR-1301 signaling pathways with the inhibition of cell proliferation. Methods: In this study, we prepared the cell clones that the KLF6 super enhancer was deleted by means of the CRISPR/Cas9 system-mediated genetic engineering. Changes in miR-1301 expression after the deletion of the KLF6 super enhancer were evaluated by RT-PCR analysis, and the signal pathway of miR-1301 with inhibition of the cell proliferation was examined using RNA interference technology. Results: The results showed that miR-1301 expression was significantly increased after the deletion of the KLF6 super enhancer. Over-expression of miR-1301 induced by deletion of the KLF6 super enhancer also regulated the expression of p21 and p53 in human hepatoma cells. functional modeling of findings using siRNA specific to miR-1301 showed that expression level changes had direct biological effects on cellular proliferation in Human hepatoma cells. Furthermore, cellular proliferation assay was shown to be directly associated with miR-1301 levels. Conclusion: As a result, it was demonstrated that the over-expression of miR-1301 induced by the disruption of the KLF6 super enhancer leads to a significant inhibition of proliferation in HepG2 cells. Moreover, it was demonstrated that the KLF6 super enhancer regulates the cell-proliferative effects which are mediated, at least in part, by the induction of p21and p53 in a p53-dependent manner. Our results provide the functional significance of miR-1301 in understanding the transcriptional regulation mechanism of the KLF6 super enhancer.


Author(s):  
S. Kolapkar ◽  
R. S. Bharsakade ◽  
A. U. Rajurkar

2021 ◽  
Author(s):  
Cheng Chen ◽  
Jesse Mullis ◽  
Beshoy Morkos

Abstract Risk management is vital to a product’s lifecycle. The current practice of reducing risks relies on domain experts or management tools to identify unexpected engineering changes, where such approaches are prone to human errors and laborious operations. However, this study presents a framework to contribute to requirements management by implementing a generative probabilistic model, the supervised latent Dirichlet allocation (LDA) with collapsed Gibbs sampling (CGS), to study the topic composition within three unlabeled and unstructured industrial requirements documents. As finding the preferred number of topics remains an open-ended question, a case study estimates an appropriate number of topics to represent each requirements document based on both perplexity and coherence values. Using human evaluations and interpretable visualizations, the result demonstrates the different level of design details by varying the number of topics. Further, a relevance measurement provides the flexibility to improve the quality of topics. Designers can increase design efficiency by understanding, organizing, and analyzing high-volume requirements documents in confirmation management based on topics across different domains. With domain knowledge and purposeful interpretation of topics, designers can make informed decisions on product evolution and mitigate the risks of unexpected engineering changes.


Author(s):  
Irving Streimer

The paper develops a methodological approach to the sizing of man-machine systems which is predicated upon the efficiency of conversion of available system energy into useful goal directed work. Systems are generically categorized into two classes as a function of their energy replacement characteristics. Four classes of energy conversion efficiency degradations are delineated which can adversely affect system capability, reliability, and cost. The effects of alterations in operator performance characteristics upon system design are detailed in terms of engineering changes, and suggestions are advanced as to the nature of the future research necessary to obtain maximum cost effectiveness in future systems.


Sign in / Sign up

Export Citation Format

Share Document