In situ study of electron beam-induced chemical vapor deposition of Au in an environmental TEM

Author(s):  
J. Drucker ◽  
R. Sharma ◽  
J. Kouvetakis ◽  
K.H.J. Weiss

Patterning of metals is a key element in the fabrication of integrated microelectronics. For circuit repair and engineering changes constructive lithography, writing techniques, based on electron, ion or photon beam-induced decomposition of precursor molecule and its deposition on top of a structure have gained wide acceptance Recently, scanning probe techniques have been used for line drawing and wire growth of W on a silicon substrate for quantum effect devices. The kinetics of electron beam induced W deposition from WF6 gas has been studied by adsorbing the gas on SiO2 surface and measuring the growth in a TEM for various exposure times. Our environmental cell allows us to control not only electron exposure time but also the gas pressure flow and the temperature. We have studied the growth kinetics of Au Chemical vapor deposition (CVD), in situ, at different temperatures with/without the electron beam on highly clean Si surfaces in an environmental cell fitted inside a TEM column.

Author(s):  
J. L. Kenty

An AEI EM6 electron microscope was modified for the in situ chemical vapor deposition (CVD) of Si films by pyrolysis of SiH4 gas. The environmental cell was so constructed that 100 μm dia. apertures placed 1.6 mm apart formed the top and bottom of the CVD microchamber and permitted a gas flow of up to 0.4 cm3 (STP)/min at up to 10 torr. A current of 2 amps through a single 200 mesh Ti grid of 0.003 mm2 net cross sectional area is sufficient to heat the sample to ~1200°C. Some temperature-heater power calibration experiments were performed by observing the melting point of evaporated metal films.


2000 ◽  
Vol 611 ◽  
Author(s):  
Hwa Sung Rhee ◽  
Heui Seung Lee ◽  
Jong Ho Park ◽  
Byung Tae Ahn

ABSTRACTUniform epitaxial CoSi2 layers have been grown in situ on a (100) Si substrate at temperatures near 600 °C by reactive chemical-vapor deposition of cyclopentadienyl dicarbonyl cobalt, Co(η5-C5H5)(CO)2. The growth kinetics of an epitaxial CoSi2 layer on a Si (100) substrate was investigated at temperatures ranging from 575 to 650 °C. In initial deposition stage, platelike discrete CoSi2 spikes were nucleated along the <111> directions in (100) Si substrate with a twinned structure. The discrete CoSi2 plates with both {111} and (100) planes grew into an epitaxial layer with a flat interface on (100) Si. For epitaxial CoSi2 growth on (100) Si, the activation energy of the parabolic growth was found to be 2.80 eV. The growth rate seems to be controlled by the diffusion of Co through the CoSi2 layer.


2004 ◽  
Vol 10 (1) ◽  
pp. 105-111 ◽  
Author(s):  
F.M. Ross ◽  
M. Kammler ◽  
M.E. Walsh ◽  
M.C. Reuter

We have usedin situelectron microscopy to observe the nucleation of Ge islands on lithographically patterned Si(001) mesas. Images were obtained at video rate during chemical vapor deposition of Ge, using a reflection electron microscopy geometry that allows nucleation to be observed over large areas. By comparing the kinetics of nucleation and coarsening on substrates modified by different annealing conditions, we find that the final island arrangement depends on the nature of the mesa sidewalls, and we suggest that this may be due to changes in diffusion of Ge across the nonplanar surface.


Sign in / Sign up

Export Citation Format

Share Document