Fuzzy-Based Energy Management Control: Design of a Battery Auxiliary Power Unit for Remote Applications

2014 ◽  
Vol 20 (4) ◽  
pp. 41-49 ◽  
Author(s):  
Marcelo Godoy Simoes ◽  
Benjamin Blunier ◽  
Abdellatif Miraoui
2018 ◽  
Vol 10 (10) ◽  
pp. 3758 ◽  
Author(s):  
Shaobo Xie ◽  
Xiaosong Hu ◽  
Kun Lang ◽  
Shanwei Qi ◽  
Tong Liu

Pontryagin’s Minimum Principle (PMP) has a significant computational advantage over dynamic programming for energy management issues of hybrid electric vehicles. However, minimizing the total energy consumption for a plug-in hybrid electric vehicle based on PMP is not always a two-point boundary value problem (TPBVP), as the optimal solution of a powering mode will be either a pure-electric driving mode or a hybrid discharging mode, depending on the trip distance. In this paper, based on a plug-in hybrid electric truck (PHET) equipped with an automatic mechanical transmission (AMT), we propose an integrated control strategy to flexibly identify the optimal powering mode in accordance with different trip lengths, where an electric-only-mode decision module is incorporated into the TPBVP by judging the auxiliary power unit state and the final battery state-of-charge (SOC) level. For the hybrid mode, the PMP-based energy management problem is converted to a normal TPBVP and solved by using a shooting method. Moreover, the energy management for the plug-in hybrid electric truck with an AMT involves simultaneously optimizing the power distribution between the auxiliary power unit (APU) and the battery, as well as the gear-shifting choice. The simulation results with long- and short-distance scenarios indicate the flexibility of the PMP-based strategy. Furthermore, the proposed control strategy is compared with dynamic programming (DP) and a rule-based charge-depleting and charge-sustaining (CD-CS) strategy to evaluate its performance in terms of computational accuracy and time efficiency.


2009 ◽  
Vol 129 (2) ◽  
pp. 228-229
Author(s):  
Noboru Katayama ◽  
Hideyuki Kamiyama ◽  
Yusuke Kudo ◽  
Sumio Kogoshi ◽  
Takafumi Fukada

1989 ◽  
Author(s):  
DOUG MEYER ◽  
KENT WEBER ◽  
WALTER SCOTT

2020 ◽  
Vol 33 (2) ◽  
pp. 448-455 ◽  
Author(s):  
Liansheng LIU ◽  
Yu PENG ◽  
Lulu WANG ◽  
Yu DONG ◽  
Datong LIU ◽  
...  

2021 ◽  
Author(s):  
Thomas Bronson ◽  
Rudy Dudebout ◽  
Nagaraja Rudrapatna

Abstract The aircraft Auxiliary Power Unit (APU) is required to provide power to start the main engines, conditioned air and power when there are no facilities available and, most importantly, emergency power during flight operation. Given the primary purpose of providing backup power, APUs have historically been designed to be extremely reliable while minimizing weight and fabrication cost. Since APUs are operated at airports especially during taxi operations, the emissions from the APUs contribute to local air quality. There is clearly significant regulatory and public interest in reducing emissions from all sources at airports, including from APUs. As such, there is a need to develop technologies that reduce criteria pollutants, namely oxides of nitrogen (NOx), unburned hydrocarbons (UHC), carbon monoxide (CO) and smoke (SN) from aircraft APUs. Honeywell has developed a Low-Emissions (Low-E) combustion system technology for the 131-9 and HGT750 family of APUs to provide significant reduction in pollutants for narrow-body aircraft application. This article focuses on the combustor technology and processes that have been successfully utilized in this endeavor, with an emphasis on abating NOx. This paper describes the 131-9/HGT750 APU, the requirements and challenges for small gas turbine engines, and the selected strategy of Rich-Quench-Lean (RQL) combustion. Analytical and experimental results are presented for the current generation of APU combustion systems as well as the Low-E system. The implementation of RQL aerodynamics is well understood within the aero-gas turbine engine industry, but the application of RQL technology in a configuration with tangential liquid fuel injection which is also required to meet altitude ignition at 41,000 ft is the novelty of this development. The Low-E combustion system has demonstrated more than 25% reduction in NOx (dependent on the cycle of operation) vs. the conventional 131-9 combustion system while meeting significant margins in other criteria pollutants. In addition, the Low-E combustion system achieved these successes as a “drop-in” configuration within the existing envelope, and without significantly impacting combustor/turbine durability, combustor pressure drop, or lean stability.


Sign in / Sign up

Export Citation Format

Share Document