Numerical Investigation of Disturbed Open-loop Control Obtained by the Covering Method

Author(s):  
Yulia Belinskaya
1998 ◽  
Author(s):  
C. Truman ◽  
Lenore McMackin ◽  
Robert Pierson ◽  
Kenneth Bishop ◽  
Ellen Chen

2008 ◽  
Author(s):  
Thomas Bifano ◽  
Jason Stewart ◽  
Alioune Diouf

2016 ◽  
Vol 24 (9) ◽  
pp. 1757-1773 ◽  
Author(s):  
Lorenzo Sallese ◽  
Niccolò Grossi ◽  
Antonio Scippa ◽  
Gianni Campatelli

Among the chatter suppression techniques in milling, active fixtures seem to be the most industrially oriented, mainly because these devices could be directly retrofittable to a variety of machine tools. The actual performances strongly depend on fixture design and the control logic employed. The usual approach in the literature, derived from general active vibration control applications, is based on the employment of adaptive closed-loop controls aimed at mitigating the amplitude of chatter frequencies with targeted counteracting vibrations. Whilst this approach has proven its effectiveness, a general application would demand a wide actuation bandwidth that is practically impeded by inertial forces and actuator-related issues. This paper presents the study of the performance of alternative open-loop actuation strategies in suppressing chatter phenomena, aiming at limiting the required actuation bandwidth. A dedicated time-domain simulation model, integrating fixture dynamics and the features of piezoelectric actuators, is developed and experimentally validated in order to be used as a testing environment to assess the effectiveness of the proposed actuation strategies. An extensive numerical investigation is then carried out to highlight the most influential factors in assessing the capability of suppressing chatter vibrations. The results clearly demonstrated that the regenerative effect could be effectively disrupted by actuation frequencies close to half the tooth-pass frequency, as long as adequate displacement is provided by the actuators. This could sensibly increase the critical axial depth of cut and hence improve the achievable material removal rate, as discussed in the paper.


2011 ◽  
Vol 418-420 ◽  
pp. 1865-1868
Author(s):  
Ming Jin Yang ◽  
Xi Wen Li ◽  
Zhi Gang Wang ◽  
Tie Lin Shi

The performance of speed regulating is very important to the mixing process with safe, efficient operation and high quality of production. Strategies and practices of responses and optimization of a PID-based speed regulating system of a planetary mixer were presented in this paper. Research results show that: by means of the signal constraint function presented by Simulink Response Optimization, optimization PID parameters of the 2-DOF-PID controller can be obtained, and the response of close-loop control system has quite good performance of overshoot, response time, and stability compared with an open-loop control system.


2002 ◽  
Vol 21 (10-11) ◽  
pp. 849-859 ◽  
Author(s):  
Kenneth A. Mcisaac ◽  
James P. Ostrowski

In this paper, we describe experimental work using an underwater, biomimetic, eel-like robot to verify a simplified dynamic model and open-loop control routines. We compare experimental results to previous analytically derived, but approximate expressions for proposed gaits for forward/backward swimming, circular swimming, sideways swimming and turning in place. We have developed a five-link, underwater eel-like robot, focusing on modularity, reliability and rapid prototyping, to verify our theoretical predictions. Results from open-loop experiments performed with this robot in an aquatic environment using an off-line vision system for position sensing show good agreement with theory.


AIAA Journal ◽  
1994 ◽  
Vol 32 (3) ◽  
pp. 555-563 ◽  
Author(s):  
Ellen K. Longmire ◽  
John K. Eaton

Sign in / Sign up

Export Citation Format

Share Document