Squeezing a Large Program into a Small Memory Space?

IEEE Micro ◽  
1984 ◽  
Vol 4 (3) ◽  
pp. 5-5
Keyword(s):  
2020 ◽  
Author(s):  
Zahra Zandesh

BACKGROUND The complicated nature of cloud computing encompassing internet-based technologies and service models for delivering IT applications, processing capability, storage, and memory space and some notable features motivate organizations to migrate their core businesses to the cloud. Consequently, healthcare organizations are much interested to migrate to this new paradigm despite challenges about security, privacy and compliances issues. OBJECTIVE The present study was conducted to investigate all related cloud compliances in health domain in order to find gaps in this context. METHODS All works on cloud compliance issues were surveyed after 2013 in health domain in PubMed, Scopus, Web of Science, and IEEE Digital Library databases. RESULTS Totally, 36 compliances had been found in this domain used in different countries for a variety of purposes. Initially, all founded compliances were divided into three parts as well as five standards, twenty-eight legislations and three policies and guidelines each of which is presented here by in detail. CONCLUSIONS Then, some main headlines like compliance management, data management, data governance, information security services, medical ethics, and patients' rights were recommended in terms of any compliance or frameworks and their corresponding patterns which should be involved in this domain.


2008 ◽  
Author(s):  
X. Haubois ◽  
R. Genzel ◽  
G. Perrin ◽  
S. Gillessen ◽  
T. Paumard ◽  
...  

1995 ◽  
Vol 05 (02) ◽  
pp. 239-259
Author(s):  
SU HWAN KIM ◽  
SEON WOOK KIM ◽  
TAE WON RHEE

For data analyses, it is very important to combine data with similar attribute values into a categorically homogeneous subset, called a cluster, and this technique is called clustering. Generally crisp clustering algorithms are weak in noise, because each datum should be assigned to exactly one cluster. In order to solve the problem, a fuzzy c-means, a fuzzy maximum likelihood estimation, and an optimal fuzzy clustering algorithms in the fuzzy set theory have been proposed. They, however, require a lot of processing time because of exhaustive iteration with an amount of data and their memberships. Especially large memory space results in the degradation of performance in real-time processing applications, because it takes too much time to swap between the main memory and the secondary memory. To overcome these limitations, an extended fuzzy clustering algorithm based on an unsupervised optimal fuzzy clustering algorithm is proposed in this paper. This algorithm assigns a weight factor to each distinct datum considering its occurrence rate. Also, the proposed extended fuzzy clustering algorithm considers the degree of importances of each attribute, which determines the characteristics of the data. The worst case is that the whole data has an uniformly normal distribution, which means the importance of all attributes are the same. The proposed extended fuzzy clustering algorithm has better performance than the unsupervised optimal fuzzy clustering algorithm in terms of memory space and execution time in most cases. For simulation the proposed algorithm is applied to color image segmentation. Also automatic target detection and multipeak detection are considered as applications. These schemes can be applied to any other fuzzy clustering algorithms.


2016 ◽  
Vol 12 (S329) ◽  
pp. 279-286
Author(s):  
Jorick S. Vink ◽  
C.J. Evans ◽  
J. Bestenlehner ◽  
C. McEvoy ◽  
O. Ramírez-Agudelo ◽  
...  

AbstractWe present a number of notable results from the VLT-FLAMES Tarantula Survey (VFTS), an ESO Large Program during which we obtained multi-epoch medium-resolution optical spectroscopy of a very large sample of over 800 massive stars in the 30 Doradus region of the Large Magellanic Cloud (LMC). This unprecedented data-set has enabled us to address some key questions regarding atmospheres and winds, as well as the evolution of (very) massive stars. Here we focus on O-type runaways, the width of the main sequence, and the mass-loss rates for (very) massive stars. We also provide indications for the presence of a top-heavy initial mass function (IMF) in 30 Dor.


2013 ◽  
Vol 380-384 ◽  
pp. 1969-1972
Author(s):  
Bo Yuan ◽  
Jin Dou Fan ◽  
Bin Liu

Traditional network processors (NPs) adopt either local memory mechanism or cache mechanism as the hierarchical memory structure. The local memory mechanism usually has small on-chip memory space which is not fit for the various complicated applications. The cache mechanism is better at dealing with the temporary data which need to be read and written frequently. But in deep packet processing, cache miss occurs when reading each segment of packet. We propose a cooperative mechanism of local memory and cache. In which the packet data and temporary data are stored into local memory and cache respectively. The analysis and experimental evaluation shows that the cooperative mechanism can improve the performance of network processors and reduce processing latency with little extra resources cost.


Sign in / Sign up

Export Citation Format

Share Document