A survey on cloud computing privacy and security compliances in health domain (Preprint)

2020 ◽  
Author(s):  
Zahra Zandesh

BACKGROUND The complicated nature of cloud computing encompassing internet-based technologies and service models for delivering IT applications, processing capability, storage, and memory space and some notable features motivate organizations to migrate their core businesses to the cloud. Consequently, healthcare organizations are much interested to migrate to this new paradigm despite challenges about security, privacy and compliances issues. OBJECTIVE The present study was conducted to investigate all related cloud compliances in health domain in order to find gaps in this context. METHODS All works on cloud compliance issues were surveyed after 2013 in health domain in PubMed, Scopus, Web of Science, and IEEE Digital Library databases. RESULTS Totally, 36 compliances had been found in this domain used in different countries for a variety of purposes. Initially, all founded compliances were divided into three parts as well as five standards, twenty-eight legislations and three policies and guidelines each of which is presented here by in detail. CONCLUSIONS Then, some main headlines like compliance management, data management, data governance, information security services, medical ethics, and patients' rights were recommended in terms of any compliance or frameworks and their corresponding patterns which should be involved in this domain.

Author(s):  
S. Karthiga Devi ◽  
B. Arputhamary

Today the volume of healthcare data generated increased rapidly because of the number of patients in each hospital increasing.  These data are most important for decision making and delivering the best care for patients. Healthcare providers are now faced with collecting, managing, storing and securing huge amounts of sensitive protected health information. As a result, an increasing number of healthcare organizations are turning to cloud based services. Cloud computing offers a viable, secure alternative to premise based healthcare solutions. The infrastructure of Cloud is characterized by a high volume storage and a high throughput. The privacy and security are the two most important concerns in cloud-based healthcare services. Healthcare organization should have electronic medical records in order to use the cloud infrastructure. This paper surveys the challenges of cloud in healthcare and benefits of cloud techniques in health care industries.


Internet-of-Things (IoT) has been considered as a fundamental part of our day by day existence with billions of IoT devices gathering information remotely and can interoperate within the current Internet framework. Fog computing is nothing but cloud computing to the extreme of network security. It provides computation and storage services via CSP (Cloud Service Provider) to end devices in the Internet of Things (IoT). Fog computing allows the data storing and processing any nearby network devices or nearby cloud endpoint continuum. Using fog computing, the designer can reduce the computation architecture of the IoT devices. Unfortunitily, this new paradigm IoT-Fog faces numerous new privacy and security issues, like authentication and authorization, secure communication, information confidentiality. Despite the fact that the customary cloud-based platform can even utilize heavyweight cryptosystem to upgrade security, it can't be performed on fog devices drectly due to reseource constraints. Additionally, a huge number of smart fog devices are fiercely disseminated and situated in various zones, which expands the danger of being undermined by some pernicious gatherings. Trait Based Encryption (ABE) is an open key encryption conspire that enables clients to scramble and unscramble messages dependent on client qualities, which ensures information classification and hearty information get to control. Be that as it may, its computational expense for encryption and unscrambling stage is straightforwardly corresponding to the multifaceted nature of the arrangements utilized. The points is to assess the planning, CPU burden, and memory burden, and system estimations all through each phase of the cloud-to-things continuum amid an analysis for deciding highlights from a finger tapping exercise for Parkinson's Disease patients. It will be appeared there are confinements to the proposed testbeds when endeavoring to deal with upwards of 35 customers at the same time. These discoveries lead us to a proper conveyance of handling the leaves the Intel NUC as the most suitable fog gadget. While the Intel Edison and Raspberry Pi locate a superior balance at in the edge layer, crossing over correspondence conventions and keeping up a self-mending network topology for "thing" devices in the individual territory organize.


2019 ◽  
pp. 678-697
Author(s):  
Munwar Ali Zardari ◽  
Low Tang Jung

Cloud computing is a new paradigm model that offers different services to its customers. The increasing number of users for cloud services i.e. software, platform or infrastructure is one of the major reasons for security threats for customers' data. Some major security issues are highlighted in data storage service in the literature. Data of thousands of users are stored on a single centralized place where the possibility of data threat is high. There are many techniques discussed in the literature to keep data secure in the cloud, such as data encryption, private cloud and multiple clouds concepts. Data encryption is used to encrypt the data or change the format of the data into the unreadable format that unauthorized users could not understand even if they succeed to get access of the data. Data encryption is very expensive technique, it takes time to encrypt and decrypt the data. Deciding the security approach for data security without understanding the security needs of the data is a technically not a valid approach. It is a basic requirement that one should understand the security level of data before applying data encryption security approach. To discover the data security level of the data, the authors used machine learning approach in the cloud. In this paper, a data classification approach is proposed for the cloud and is implemented in a virtual machine named as Master Virtual Machine (Vmm). Other Vms are the slave virtual machines which will receive from Vmm the classified information for further processing in cloud. In this study the authors used three (3) virtual machines, one master Vmm and two slaves Vms. The master Vmm is responsible for finding the classes of the data based on its confidentiality level. The data is classified into two classes, confidential (sensitive) and non-confidential (non-sensitive/public) data using K-NN algorithm. After classification phase, the security phase (encryption phase) shall encrypt only the confidential (sensitive) data. The confidentiality based data classification is using K-NN in cloud virtual environment as the method to encrypt efficiently the only confidential data. The proposed approach is efficient and memory space friendly and these are the major findings of this work.


Sensors ◽  
2018 ◽  
Vol 18 (8) ◽  
pp. 2664 ◽  
Author(s):  
Luis Belem Pacheco ◽  
Eduardo Pelinson Alchieri ◽  
Priscila Mendez Barreto

The use of Internet of Things (IoT) is rapidly growing and a huge amount of data is being generated by IoT devices. Cloud computing is a natural candidate to handle this data since it has enough power and capacity to process, store and control data access. Moreover, this approach brings several benefits to the IoT, such as the aggregation of all IoT data in a common place and the use of cloud services to consume this data and provide useful applications. However, enforcing user privacy when sending sensitive information to the cloud is a challenge. This work presents and evaluates an architecture to provide privacy in the integration of IoT and cloud computing. The proposed architecture, called PROTeCt—Privacy aRquitecture for integratiOn of internet of Things and Cloud computing, improves user privacy by implementing privacy enforcement at the IoT devices instead of at the gateway, as is usually done. Consequently, the proposed approach improves both system security and fault tolerance, since it removes the single point of failure (gateway). The proposed architecture is evaluated through an analytical analysis and simulations with severely constrained devices, where delay and energy consumption are evaluated and compared to other architectures. The obtained results show the practical feasibility of the proposed solutions and demonstrate that the overheads introduced in the IoT devices are worthwhile considering the increased level of privacy and security.


Author(s):  
Mirjana Maksimović

Nowhere do the technology advancements bring improvements than in the healthcare sector, constantly creating new healthcare applications and systems which completely revolutionize the healthcare domain. The appearance of Internet of Things (IoT) based healthcare systems has immensely improved quality and delivery of care, and significantly reduced the costs. At the same time, these systems generate the enormous amount of health-associated data which has to be properly gathered, analyzed and shared. The smart devices, as the components of IoT-driven healthcare systems, are not able to deal with IoT-produced data, neither data posting to the Cloud is the appropriate solution. To overcome smart devices’ and Cloud’s limitations the new paradigm, known as Fog computing, has appeared, where an additional layer processes the data and sends the results to the Cloud. Despite numerous benefits Fog computing brings into IoT-based environments, the privacy and security issues remain the main challenge for its implementation. The reasons for integrating the IoT-based healthcare system and Fog computing, benefits and challenges, as well as the proposition of simple low-cost system are presented in this paper.


Author(s):  
Ch. E. Karibdzhanov

The main source of success for a customer-centric organization is the ability to identify its customers, identify their needs, and use that information to develop a customer-centric strategy. In this regard, there is a widespread change in attitudes toward the construction of management in organizations. Whereas previously the competitiveness of an organization could be measured by its financial performance, now the intellectual potential of an organization is at the forefront. As the role of the patient in the health care system has intensified, the importance of patient participation has received increasing attention and has become central to health care research. In this regard, in today’s environment, the foundation of success in the treatment and delivery of professional care in medicine is primarily the degree of patient satisfaction. Patient-centered care acts as a new paradigm for the development of the health care system, which is characterized by a shift in the center of gravity to the patient. In this regard, in the field of health care, the relationship between the patient and the doctor, as perceived by the patient, is one of the main elements of the methodology of scientific research. The purpose of this article is to review and analyze the results of the PDRQ–9, which assesses the patient-physician relationship. The PDRQ–9 provides researchers with a brief assessment of the therapeutic aspects of the patient-physician relationship in the primary care setting. It is a valuable tool for research and practice purposes that includes monitoring the patient-doctor relationship.


2020 ◽  
Vol 19 ◽  

Fog computing is a promising technology that is used by many organizations and end-users. It has characteristics and advantages that offer services such as computing, storage, communication, and application services. It facilitates these services to end-users and allows to increase the number of devices that can connect to the network. In this paper, we provide a survey of Fog computing technology in terms of its architecture, features, advantages and disadvantages. We provide a comparison of this model with Cloud Computing, Mobile-Edge Computing, and Cloudlet Computing. We also present challenges and issues that face Fog Computing such as privacy and security, control and management, fog networking and task scheduling. Finally, we discuss aspects of Fog computing security and the benefits of integration between Fog computing and other techniques like Internet of Things and Cloud Computing.


Author(s):  
Kayalvili S ◽  
Sowmitha V

Cloud computing enables users to accumulate their sensitive data into cloud service providers to achieve scalable services on-demand. Outstanding security requirements arising from this means of data storage and management include data security and privacy. Attribute-based Encryption (ABE) is an efficient encryption system with fine-grained access control for encrypting out-sourced data in cloud computing. Since data outsourcing systems require flexible access control approach Problems arises when sharing confidential corporate data in cloud computing. User-Identity needs to be managed globally and access policies can be defined by several authorities. Data is dual encrypted for more security and to maintain De-Centralization in Multi-Authority environment.


Sign in / Sign up

Export Citation Format

Share Document