Network Reconfiguration of Distribution Systems Using Improved Mixed-Integer Hybrid Differential Evolution

2002 ◽  
Vol 22 (12) ◽  
pp. 66-66 ◽  
Author(s):  
C. T. Su ◽  
C. S. Lee
Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4172 ◽  
Author(s):  
Ibrahim Diaaeldin ◽  
Shady Abdel Aleem ◽  
Ahmed El-Rafei ◽  
Almoataz Abdelaziz ◽  
Ahmed F. Zobaa

In this study, we allocated soft open points (SOPs) and distributed generation (DG) units simultaneously with and without network reconfiguration (NR), and investigate the contribution of SOP losses to the total active losses, as well as the effect of increasing the number of SOPs connected to distribution systems under different loading conditions. A recent meta-heuristic optimization algorithm called the discrete-continuous hyper-spherical search algorithm is used to solve the mixed-integer nonlinear problem of SOPs and DGs allocation, along with new NR methodology to obtain radial configurations in an efficient manner without the possibility of getting trapped in local minima. Further, multi-scenario studies are conducted on an IEEE 33-node balanced benchmark distribution system and an 83-node balanced distribution system from a power company in Taiwan. The contributions of SOP losses to the total active losses, as well as the effect of increasing the number of SOPs connected to the system, are investigated to determine the real benefits gained from their allocation. It was clear from the results obtained that simultaneous NR, SOP, and DG allocation into a distribution system creates a hybrid configuration that merges the benefits offered by radial distribution systems and mitigates drawbacks related to losses, power quality, and voltage violations, while offering a far more efficient and optimal network operation. Also, it was found that the contribution of the internal loss of SOPs to the total loss for different numbers of installed SOPs is not dependent on the number of SOPs and that loss minimization is not always guaranteed by installing more SOPs or DGs along with NR. One of the findings of the paper demonstrates that NR with optimizing tie-lines could reduce active losses considerably. The results obtained also validate, with proper justifications, that SOPs installed for the management of constraints in LV feeders could further reduce losses and efficiently address issues related to voltage violations and network losses.


Author(s):  
Ibrahim M. Diaaeldin ◽  
Shady H. E. Abdel Aleem ◽  
Ahmed El-Rafei ◽  
Almoataz Y. Abdelaziz ◽  
Ahmed F. Zobaa

In this paper, a recent meta-heuristic optimization algorithm called the discrete-continuous hyper-spherical search algorithm is used to solve the mixed-integer nonlinear problem of soft open points (SOPs) and renewable distributed generators allocation along with new network reconfiguration methodology under different loading conditions to minimize the total power loss in balanced distribution systems. Multi-scenario studies, which aim to improve the investigation of the overall performance of the strategies, are conducted on IEEE 33-node and 83-node balanced distribution systems. The contributions of SOP losses to the total active losses, as well as the effect of increasing the number of SOPs connected to the system, are investigated to determine the real benefits gained from their allocation. The results obtained validate, with proper justifications, the effectiveness of allocating both SOPs and renewable distributed generators with the proposed network reconfiguration methodology to provide the best operation of distribution networks with minimum losses and enhanced power quality performance. It was also shown that SOPs successfully assist the growing integration plans of the renewable distributed generators units and can address issues related to voltage violations and network losses efficiently.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3783
Author(s):  
Mateusz Andrychowicz

The paper shows a method of optimizing local initiatives in the energy sector, such as energy cooperatives and energy clusters. The aim of optimization is to determine the structure of generation sources and energy storage in order to minimize energy costs. The analysis is carried out for the time horizon of one year, with an hourly increment, taking into account various RES (wind turbines (WT), photovoltaic installations (PV), and biogas power plant (BG)) and loads (residential, commercial, and industrial). Generation sources and loads are characterized by generation/demand profiles in order to take into account their variability. The optimization was carried out taking into account the technical aspects of the operation of distribution systems, such as power flows and losses, voltage levels in nodes, and power exchange with the transmission system, and economic aspects, such as capital and fixed and variable operating costs. The method was calculated by sixteen simulation scenarios using Mixed-Integer Linear Programming (MILP).


Sign in / Sign up

Export Citation Format

Share Document