An Approach to Time Series Classification Using Binary Distribution Tree

Author(s):  
Chao Ma ◽  
Xiaochuan Shi ◽  
Weiping Zhu ◽  
Wei Li ◽  
Xiaohui Cui ◽  
...  
Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1908
Author(s):  
Chao Ma ◽  
Xiaochuan Shi ◽  
Wei Li ◽  
Weiping Zhu

In the past decade, time series data have been generated from various fields at a rapid speed, which offers a huge opportunity for mining valuable knowledge. As a typical task of time series mining, Time Series Classification (TSC) has attracted lots of attention from both researchers and domain experts due to its broad applications ranging from human activity recognition to smart city governance. Specifically, there is an increasing requirement for performing classification tasks on diverse types of time series data in a timely manner without costly hand-crafting feature engineering. Therefore, in this paper, we propose a framework named Edge4TSC that allows time series to be processed in the edge environment, so that the classification results can be instantly returned to the end-users. Meanwhile, to get rid of the costly hand-crafting feature engineering process, deep learning techniques are applied for automatic feature extraction, which shows competitive or even superior performance compared to state-of-the-art TSC solutions. However, because time series presents complex patterns, even deep learning models are not capable of achieving satisfactory classification accuracy, which motivated us to explore new time series representation methods to help classifiers further improve the classification accuracy. In the proposed framework Edge4TSC, by building the binary distribution tree, a new time series representation method was designed for addressing the classification accuracy concern in TSC tasks. By conducting comprehensive experiments on six challenging time series datasets in the edge environment, the potential of the proposed framework for its generalization ability and classification accuracy improvement is firmly validated with a number of helpful insights.


2010 ◽  
Vol 32 (2) ◽  
pp. 261-266
Author(s):  
Li Wan ◽  
Jian-xin Liao ◽  
Xiao-min Zhu ◽  
Ping Ni

Author(s):  
G. Mourgias-Alexandris ◽  
N. Passalis ◽  
G. Dabos ◽  
A. Totovic ◽  
A. Tefas ◽  
...  

Author(s):  
Zhiwen Xiao ◽  
Xin Xu ◽  
Huanlai Xing ◽  
Shouxi Luo ◽  
Penglin Dai ◽  
...  

IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 212247-212257
Author(s):  
Xu Cheng ◽  
Peihua Han ◽  
Guoyuan Li ◽  
Shengyong Chen ◽  
Houxiang Zhang

Sign in / Sign up

Export Citation Format

Share Document