A new method of parameter estimation of oceanographic coastal zone by electromagnetic measurements

Author(s):  
G. Levita ◽  
J. Calderon
2010 ◽  
Vol 118-120 ◽  
pp. 601-605
Author(s):  
Han Ming

Evaluation method of reliability parameter estimation needs to be improved effectively with the advance of science and technology. This paper develops a new method of parameter estimation, which is named E-Bayesian estimation method. In the case one hyper-parameter, the definition of E-Bayesian estimation of the failure probability is provided, moreover, the formulas of E-Bayesian estimation and hierarchical Bayesian estimation, and the property of E-Bayesian estimation of the failure probability are also provided. Finally, calculation on practical problems shows that the provided method is feasible and easy to perform.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Sonia Goel ◽  
Meena Tushir

Purpose In real-world decision-making, high accuracy data analysis is essential in a ubiquitous environment. However, we encounter missing data while collecting user-related data information because of various privacy concerns on account of a user. This paper aims to deal with incomplete data for fuzzy model identification, a new method of parameter estimation of a Takagi–Sugeno model in the presence of missing features. Design/methodology/approach In this work, authors proposed a three-fold approach for fuzzy model identification in which imputation-based linear interpolation technique is used to estimate missing features of the data, and then fuzzy c-means clustering is used for determining optimal number of rules and for the determination of parameters of membership functions of the fuzzy model. Finally, the optimization of the all antecedent and consequent parameters along with the width of the antecedent (Gaussian) membership function is done by gradient descent algorithm based on the minimization of root mean square error. Findings The proposed method is tested on two well-known simulation examples as well as on a real data set, and the performance is compared with some traditional methods. The result analysis and statistical analysis show that the proposed model has achieved a considerable improvement in accuracy in the presence of varying degree of data incompleteness. Originality/value The proposed method works well for fuzzy model identification method, a new method of parameter estimation of a Takagi–Sugeno model in the presence of missing features with varying degree of missing data as compared to some well-known methods.


2011 ◽  
Vol 18 (2) ◽  
pp. 275-282
Author(s):  
Lidong Liu ◽  
Jifeng Hu ◽  
Zishu He ◽  
Chunlin Han ◽  
Huiyong Li ◽  
...  

A Velocity Measurement Method Based on Scaling Parameter Estimation of a Chaotic SystemIn this paper, we propose a new method of measuring the target velocity by estimating the scaling parameter of a chaos-generating system. First, we derive the relation between the target velocity and the scaling parameter of the chaos-generating system. Then a new method for scaling parameter estimation of the chaotic system is proposed by exploiting the chaotic synchronization property. Finally, numerical simulations show the effectiveness of the proposed method in target velocity measurement.


Sign in / Sign up

Export Citation Format

Share Document