Efficient Dual-band Ultra-Low-Power RF Energy Harvesting Front-End for Wearable Devices

Author(s):  
Seyed Mohammad Noghabaei ◽  
Rafael L. Radin ◽  
Mohamad Sawan
2020 ◽  
Vol 40 (1) ◽  
pp. 1-6
Author(s):  
Jie Jin ◽  
Xianming Wu ◽  
Zhijun Li

An ultra low power mixer with out-of-band radio frequency (RF) energy harvesting suitable for the wireless sensors network (WSN) application is proposed in this paper. The presented mixer is able to harvest the out-of-band RF energy and keep it working in ultra low power condition and extend the battery life of the WSN. The mixer is designed and simulated with Global Foundries ’ 0.18 μ m CMOS RF process, and it operates at 2.4GHz industrial, scientific, and medical (ISM) band. The Cadence IC Design Tools post-layout simulation results demonstrate that the proposed mixer consumes 248 μ W from a 1V supply voltage. Furthermore, the power consumption can be reduced to 120.8 μ W by the out-of-band RF energy harvesting rectifier.


Telecom ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 271-284
Author(s):  
Maria S. Papadopoulou ◽  
Achilles D. Boursianis ◽  
Christos K. Volos ◽  
Ioannis N. Stouboulos ◽  
Spyridon Nikolaidis ◽  
...  

Radio Frequency (RF) energy harvesting has been emerged as a potentially reliable method to replace the costly and difficult to maintain source of low-power wireless sensor networks. A plethora of dual-band rectifier designs has been proposed in the literature operating in various frequency bands. In this paper, a triple-band RF-to-DC rectifier that operates in the frequency bands of LoRaWAN, GSM-900, and WiFi 2.4 GHz is presented. The system is composed of an impedance-matching circuit, an RF-to-DC rectifier, that converts the ambient RF energy into DC voltage able to feed low-power devices, and an output load. The proposed system resonates at three different frequencies of 866 MHz, 948 MHz and 2423 MHz, which fall within the aforementioned frequency bands of interest. The feasible solution of the proposed system was based on a dual-band rectifier operating in the frequency bands of LoRaWAN and GSM-900. A series of shunt stubs was utilized in the initial design to form the feasible solution of the proposed system. The proposed triple-band rectifier was optimized using a powerful optimization algorithm, i.e., the genetic algorithm. The overall system exhibited improved characteristics compared to the initial design in terms of its resonance. Numerical results demonstrated that the overall system exhibited an efficiency of 81% with 3.23 V of the output voltage, for an input power of 0 dBm and a load of 13 kOhm.


Sign in / Sign up

Export Citation Format

Share Document