NEMS based thermal management for 3D many-core system

Author(s):  
Xiwei Huang ◽  
Hao Yu ◽  
Wei Zhang
Author(s):  
Anuja A. Tapase ◽  
Siddheshwar V. Patil ◽  
Dinesh B. Kulkarni

2016 ◽  
Vol 26 (03) ◽  
pp. 1750037 ◽  
Author(s):  
Xiaofeng Zhou ◽  
Lu Liu ◽  
Zhangming Zhu

Network-on-Chip (NoC) has become a promising design methodology for the modern on-chip communication infrastructure of many-core system. To guarantee the reliability of traffic, effective fault-tolerant scheme is critical to NoC systems. In this paper, we propose a fault-tolerant deflection routing (FTDR) to address faults on links and router by redundancy technique. The proposed FTDR employs backup links and a redundant fault-tolerant unit (FTU) at router-level to sustain the traffic reliability of NoC. Experimental results show that the proposed FTDR yields an improvement of routing performance and fault-tolerant capability over the reported fault-tolerant routing schemes in average flit deflection rate, average packet latency, saturation throughput and reliability by up to 13.5%, 9.8%, 10.6% and 17.5%, respectively. The layout area and power consumption are increased merely 3.5% and 2.6%.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Man Prakash Gupta ◽  
Minki Cho ◽  
Saibal Mukhopadhyay ◽  
Satish Kumar

In this paper, a proactive thermal management technique called “power multiplexing” is explored for many-core processors. Power multiplexing involves redistribution of the locations of active cores at regular time intervals to obtain uniform thermal profile with low peak temperature. Three different migration policies namely random, cyclic, and global coolest replace have been employed for power multiplexing and their efficacy in reducing the peak temperature and thermal gradient on chip is investigated. For a given migration frequency, global coolest replace policy is found to be the most effective among the three policies considered as this policy provides 10 °C reduction in peak temperature and 20 °C reduction in maximum spatial temperature difference on a 256 core chip. Power configuration on the chip is characterized by a parameter called “proximity index” which emerges as an important parameter to represent the spatial power distribution on a chip. We also notice that the overall performance of the chip could be improved by 10% using global multiplexing.


Sign in / Sign up

Export Citation Format

Share Document