Minimization of operating time gap between primary relays at near and far ends in overcurrent relay coordination

Author(s):  
Manohar Singh ◽  
B. K. Panigrahi
2016 ◽  
Vol 17 (3) ◽  
pp. 311-326 ◽  
Author(s):  
Manohar Singh ◽  
B.K. Panigrahi ◽  
T. Vishnuvardhan

Abstract In this paper an improved over current relay coordination protection technique is proposed. The proposed technique eliminates the sympathetic/nuisance tripping in an interconnected distribution system. Nuisance trippings are eliminated by incorporating the additional selectivity constraints in conventional over current relay coordination problem. Whenever the fault is cleared only from one end of the line in bidirectional fault feed lines, transient network configuration comes into existence. Transient network configuration causes the redistribution of fault in the distribution system and leads to further nuisance tripping of relays. This problem in this paper is solved by minimising the operating time gap between primary relays located at near end and far end of a faulty line to the best minimum possible value. The differential search algorithm is applied for optimization of highly non-linear over current relay coordination problem in this paper. The result presented in this paper shows that the proposed over current relay coordination technique is immune against the sympathetic/nuisance tripping and operating time difference between primary relays at near end and far end is also minimised within acceptable time margin successfully.


Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5603
Author(s):  
Muhammad Irfan ◽  
Abdul Wadood ◽  
Tahir Khurshaid ◽  
Bakht Muhammad Khan ◽  
Ki-Chai Kim ◽  
...  

The relay coordination problem is of dire importance as it is critical to isolate the faulty portion in a timely way and thus ensure electrical network security and reliability. Meanwhile a relay protection optimization problem is highly constraint and complicated problem to be addressed. To fulfill this purpose, Harris Hawk Optimization (HHO) is adapted to solve the optimization problem for Directional Over-current Relays (DOCRs) and numerical relays. As it is inspired by the intelligent and collegial chasing and preying behavior of hawks for capturing the prey, it shows quite an impressive result for finding the global optimum values. Two decision variables; Time Dial Settings (TDS) and Plug Settings (PS) are chosen as the decision variables for minimization of overall operating time of relays. The proposed algorithm is implemented on three IEEE test systems. In comparison to other state-of-the-art nature inspired and traditional algorithms, the results demonstrate the superiority of HHO.


Electricity ◽  
2021 ◽  
Vol 2 (4) ◽  
pp. 524-553
Author(s):  
Haneen Bawayan ◽  
Mohamed Younis

The inclusion of distributed energy resources (DER) in Microgrids (MGs) comes at the expense of increased changes in current direction and magnitude. In the autonomous mode of MG operation, the penetration of synchronous distributed generators (DGs) induces lower short circuit current than when the MG operates in the grid-connected mode. Such behavior impacts the overcurrent relays and makes the protection coordination difficult. This paper introduces a novel adaptive protection system that includes two phases to handle the influence of fault current variations and enable the MG to sustain its operation. The first phase optimizes the power flow by minimizing the generators’ active power loss while considering tolerable disturbances. For intolerable cases, the second phase opts to contain the effect of disturbance within a specific area, whose boundary is determined through correlation between primary/backup relay pairs. A directional overcurrent relay (DOCR) coordination optimization is formulated as a nonlinear program for minimizing the operating time of the relays within the contained area. Validation is carried out through the simulation of the IEEE 9, IEEE 14, and IEEE 15 bus systems as an autonomous MG. The simulation results demonstrate the effectiveness of our proposed protection system and its superiority to a competing approach in the literature.


2018 ◽  
Vol 13 (4) ◽  
pp. 522-528 ◽  
Author(s):  
Gina Idarraga-Ospina ◽  
Noe A. Mesa-Quintero ◽  
Jaime A. Valencia ◽  
Alberto Cavazos ◽  
Eduardo Orduna

Sign in / Sign up

Export Citation Format

Share Document