An Energy Management System for Joint Operation of Small-Scale Wind Turbines and Electric Thermal Storage in Isolated Microgrids

Author(s):  
Jinshun Su ◽  
Payman Dehghanian ◽  
Benedict Vergara ◽  
Mohammad Heidari Kapourchali
Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 68 ◽  
Author(s):  
Taha Selim Ustun ◽  
S. M. Suhail Hussain

As the number of active components increase, distribution networks become harder to control. Microgrids are proposed to divide large networks into smaller, more manageable portions. The benefits of using microgrids are multiple; the cost of installation is significantly smaller and renewable energy-based generators can be utilized at a small scale. Due to the intermittent and time dependent nature of renewables, to ensure reliable and continuous supply of energy, it is imperative to create a system that has several generators and storage systems. The way to achieve this is through an energy management system (EMS) that can coordinate all these generators with a storage system. Prior to on-site installation, validation studies should be performed on such controllers. This work presents a standardized communication modeling based on IEC 61850 that is developed for a commercial microgrid controller. Using commercial software, different terminals are set up as intelligent electronic devices (IEDs) and the operation of the EMS is emulated with proper message exchanges. Considering that these messages transmit sensitive information, such as financial transactions or dispatch instructions, securing them against cyber-attacks is very important. Therefore; message integrity, node authentication, and confidentiality features are also implemented according to IEC 62351 guidelines. Real-message exchanges are captured with and without these security features to validate secure operation of standard communication solution.


Energies ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 8489
Author(s):  
Usman Bashir Tayab ◽  
Junwei Lu ◽  
Seyedfoad Taghizadeh ◽  
Ahmed Sayed M. Metwally ◽  
Muhammad Kashif

Microgrid (MG) is a small-scale grid that consists of multiple distributed energy resources and load demand. The microgrid energy management system (M-EMS) is the decision-making centre of the MG. An M-EMS is composed of four modules which are known as forecasting, scheduling, data acquisition, and human-machine interface. However, the forecasting and scheduling modules are considered the major modules from among the four of them. Therefore, this paper proposed an advanced microgrid energy management system (M-EMS) for grid-connected residential microgrid (MG) based on an ensemble forecasting strategy and grey wolf optimization (GWO) based scheduling strategy. In the forecasting module of M-EMS, the ensemble forecasting strategy is proposed to perform the short-term forecasting of PV power and load demand. The GWO based scheduling strategy has been proposed in scheduling module of M-EMS to minimize the operating cost of grid-connected residential MG. A small-scale experiment is conducted using Raspberry Pi 3 B+ via the python programming language to validate the effectiveness of the proposed M-EMS and real-time historical data of PV power, load demand, and weather is adopted as inputs. The performance of the proposed forecasting strategy is compared with ensemble forecasting strategy-1, particle swarm optimization based artificial neural network, and back-propagation neural network. The experimental results highlight that the proposed forecasting strategy outperforms the other strategies and achieved the lowest average value of normalized root mean square error of day-ahead prediction of PV power and load demand for the chosen day. Similarly, the performance of GWO based scheduling strategy of M-EMS is analyzed and compared for three different scenarios. Finally, the experimental results prove the outstanding performance of the proposed scheduling strategy.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 8336-8345 ◽  
Author(s):  
P. Satish Kumar ◽  
R. P. S. Chandrasena ◽  
V. Ramu ◽  
G. N. Srinivas ◽  
K. Victor Sam Moses Babu

2020 ◽  
Author(s):  
amoura yahia ◽  
Ana Isabel Pereira ◽  
José Lima ◽  
Angela Ferreira ◽  
Fouad Boukli-Hacene ◽  
...  

Abstract Background: The association of distributed generators, energy storage systems and controllable loads close to the energy consumers gave place to a small-scale electrical network called microgrid. The stochastic behavior of renewable energy sources, as well as the demand variation, can lead in some cases to problems related to the reliability of the microgrid system. On the other hand, the market price of electricity from mainly non-renewable sources becomes a concern for a simple consumer due to its high costs.Method: In this work, an energy management system was developed based on an innovative optimization method, combining linear programming, based on the simplex method, with particle swarm optimisation algorithm. Two scenarios have been proposed to characterise the relation price versus gas emissions for optimal energy management. The objective of this study is to nd the optimal setpoints of generators in a smart city supplied by a microgrid in order to ensure consumer comfort, minimising the emission of greenhouse gases and ensure an appropriate operating price for all smart city consumers. Results: The simulation results have demonstrated the reliability of the optimisation approach on the energy management system in the optimal scheduling of the microgrid generators power ows, having achieved a better energy price compared to a previous study with the same data. Conclusion: The energy management system based on the proposedoptimisation approach gave an inverse correlation between economic and environmental aspects, in fact, a multi-objective optimisation approach is performed as a continuation of the work proposed in this paper.


Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1877 ◽  
Author(s):  
Andrés Henao-Muñoz ◽  
Andrés Saavedra-Montes ◽  
Carlos Ramos-Paja

An optimal power dispatch of a small-scale standalone microgrid for remote area power supply in Colombian territory is proposed in this paper. The power dispatch is generated by an energy management system based on a mixed-integer linear programming, which minimizes the cost of operating the microgrid while fulfilling the technical constraints of its elements. The energy management system solves an optimization problem using the algebraic representation of the generators and its constraints. Basic steady-state models of the generators are selected to solve the optimization problem. The small-scale microgrid is considered for a remote area power supply in Taroa, a small settlement in La Guajira, Colombia. The microgrid is composed of photovoltaic modules, a wind generator, a diesel generator, a battery bank, and residential loads. To validate the solution, the elements of the microgrids are parameterized with information from commercial equipment. Moreover, the power dispatch obtained with the proposed solution is compared with a power dispatch generated by a heuristic algorithm, which has been previously used to dispatch power in a small-scale standalone microgrid. Results show that the cost of operating the microgrid is minimized using the proposed optimization approach: a reduction of the operating cost equal to 25.5% of the cost imposed by the heuristic algorithm is obtained.


Sign in / Sign up

Export Citation Format

Share Document