Impact of FACTS devices on distance protection in transmission system

Author(s):  
M. Arun Bhaskar ◽  
A. Indhirani
2019 ◽  
Vol 14 (1) ◽  
pp. 5-11
Author(s):  
S. Rajasekaran ◽  
S. Muralidharan

Background: Increasing power demand forces the power systems to operate at their maximum operating conditions. This leads the power system into voltage instability and causes voltage collapse. To avoid this problem, FACTS devices have been used in power systems to increase system stability with much reduced economical ratings. To achieve this, the FACTS devices must be placed in exact location. This paper presents Firefly Algorithm (FA) based optimization method to locate these devices of exact rating and least cost in the transmission system. Methods: Thyristor Controlled Series Capacitor (TCSC) and Static Var Compensator (SVC) are the FACTS devices used in the proposed methodology to enhance the voltage stability of power systems. Considering two objectives of enhancing the voltage stability of the transmission system and minimizing the cost of the FACTS devices, the optimal ratings and cost were identified for the devices under consideration using Firefly algorithm as an optimization tool. Also, a model study had been done with four different cases such as normal case, line outage case, generator outage case and overloading case (140%) for IEEE 14,30,57 and 118 bus systems. Results: The optimal locations to install SVC and TCSC in IEEE 14, 30, 57 and 118 bus systems were evaluated with minimal L-indices and cost using the proposed Firefly algorithm. From the results, it could be inferred that the cost of installing TCSC in IEEE bus system is slightly higher than SVC.For showing the superiority of Firefly algorithm, the results were compared with the already published research finding where this problem was solved using Genetic algorithm and Particle Swarm Optimization. It was revealed that the proposed firefly algorithm gives better optimum solution in minimizing the L-index values for IEEE 30 Bus system. Conclusion: The optimal placement, rating and cost of installation of TCSC and SVC in standard IEEE bus systems which enhanced the voltage stability were evaluated in this work. The need of the FACTS devices was also tested during the abnormal cases such as line outage case, generator outage case and overloading case (140%) with the proposed Firefly algorithm. Outputs reveal that the recognized placement of SVC and TCSC reduces the probability of voltage collapse and cost of the devices in the transmission lines. The capability of Firefly algorithm was also ensured by comparing its results with the results of other algorithms.


Author(s):  
Naraina Avudayappan ◽  
S.N. Deepa

Purpose The loading and power variations in the power system, especially for the peak hours have abundant concussion on the loading patterns of the open access transmission system. During such unconditional state of loading the transmission line parameters and the line voltages show a substandard profile, which depicts exaction of congestion management of the power line in such events. The purpose of this paper is to present an uncomplicated and economical model for congestion management using flexible AC transmission system (FACTS) devices. Design/methodology/approach The approach desires a two-step procedure, first by optimal placement of thyristor controlled series capacitor (TCSC) and static VAR compensator (SVC) as FACTS devices in the network; second tuning the control parameters to their optimized values. The optimal location and tuning of TCSC and SVC represents a hectic optimization problem, due to its multi-objective and constrained nature. Hence, a reassuring heuristic optimization algorithm inspired by behavior of cat and firefly is employed to find the optimal placement and tuning of TCSC and SVC. Findings The effectiveness of the proposed model is tested through simulation on standard IEEE 14-bus system. The proposed approach proves to be better than the earlier existing approaches in the literature. Research limitations/implications With the completed simulation and results, it is proved that the proposed scheme has reduced the congestion in line, thereby increasing the voltage stability along with improved loading capability for the congested lines. Practical implications The usefulness of the proposed scheme is justified with the computed results, giving convenience for implementation to any practical transmission network. Originality/value This paper fulfills an identified need to study exaction of congestion management of the power line.


2019 ◽  
Vol 8 (3) ◽  
pp. 4328-4333

Distance protection is simple and it provides fast response to clear the fault. Distance protection is also providing primary and remote backup function depending upon distance of transmission line. Distance protection uses various relays like mho relay/admittance relay, impedance relay and reactance relay. In power transmission system, Flexible AC Transmission System (FACTS) controllers are used to increase power transfer capability and reactive power control, but distance relay get affected due to presence of FACTS devices. This may create the stability issues, security and it may affect on voltage profile. The changes in impedance level would affect the accuracy of distance protection. This paper represents the effect of TCSC on operation of mho relay in transmission line. The work presented here emphasis on the interaction of TCSC on distance protection and their performances under different condition i.e., load angle variation, variation of SCL, different fault location. Design and control performance of MHO relay during normal operation as well as during variation in different condition is verified by using PSCAD simulation software.


Sign in / Sign up

Export Citation Format

Share Document