Real-Time Fish Detection Approach on Self-Built Dataset Based on YOLOv3

Author(s):  
Ali Amin ◽  
Salmeen Bahnasy ◽  
K. Elghamry ◽  
A. Samir ◽  
A. Emad ◽  
...  
Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Ines Chihi ◽  
Mohamed Benrejeb

Many investigators are interested in improving the control strategies of hand prosthesis to make it functional and more convenient to use. The most used control approach is based on the forearm muscles activities, named ‘ElectroMyoGraphic’ (EMG) signal. However, these biological signals are very sensitive to many disturbances and are generally unpredictable in time, type, and level. This leads to inaccurate identification of user intent and threatens the prosthesis control reliability. This paper proposed a real-time fault detection and localization approach applied to handwriting device on the plane. This approach allows connecting inputs (IEMG signals)/outputs (pen tip coordinates) data as a parametric model for Multi-Inputs Multi-Outputs (MIMO) system. The proposed approach is considered as a model-independent abrupt or intermittent fault detection method and as an alternative solution to the unpredictable input observer based techniques, without any observability requirements. This approach allows detecting, in real time, several types of faults in one or two inputs signals and in the same or different instants. Our study is appropriate for many rapidly expanding fields and practices, including biomedical engineering, robotics, and biofeedback therapy or even military applications.


Author(s):  
Prahalad K. Rao ◽  
Jia (Peter) Liu ◽  
David Roberson ◽  
Zhenyu (James) Kong ◽  
Christopher Williams

The objective of this work is to identify failure modes and detect the onset of process anomalies in additive manufacturing (AM) processes, specifically focusing on fused filament fabrication (FFF). We accomplish this objective using advanced Bayesian nonparametric analysis of in situ heterogeneous sensor data. Experiments are conducted on a desktop FFF machine instrumented with a heterogeneous sensor array including thermocouples, accelerometers, an infrared (IR) temperature sensor, and a real-time miniature video borescope. FFF process failures are detected online using the nonparametric Bayesian Dirichlet process (DP) mixture model and evidence theory (ET) based on the experimentally acquired sensor data. This sensor data-driven defect detection approach facilitates real-time identification and correction of FFF process drifts with an accuracy and precision approaching 85% (average F-score). In comparison, the F-score from existing approaches, such as probabilistic neural networks (PNN), naïve Bayesian clustering, support vector machines (SVM), and quadratic discriminant analysis (QDA), was in the range of 55–75%.


2020 ◽  
Vol 4 (2) ◽  
pp. 161-173
Author(s):  
Yao Yang ◽  
Daowu Li ◽  
Yan Li ◽  
Jipeng Zhang ◽  
Tingting Hu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document