Quantitative evaluation of mercuric iodide and selenium for x-ray imaging device

Author(s):  
Byung-Youl Cha ◽  
Ji-Koon Park ◽  
Sang-Sik Kang ◽  
Jung-Wook Shin ◽  
Jin-Young Kim ◽  
...  
2006 ◽  
Author(s):  
Kyung-Jin Kim ◽  
Sang-Sik Kang ◽  
Ji-Koon Park ◽  
Sung-Ho Cho ◽  
Byung-Youl Cha ◽  
...  

2021 ◽  
Author(s):  
James Day

To further develop a MV x-ray portal imaging device with high detection efficiency and adequate spatial resolution for image guided radiation therapy, the experimental results for a prototype detector were matched using Monte-Carlo software to then improve upon the design. The simulation and experiment were carried out using a 6 MV beam from a linear accelerator machine. An adequate match was obtained with the spatial resolution matching up to a MTF value of 0.2 and then diverging and the total signal registered in the central fiber was matched for field sizes ranging from 3 cm by 3 cm to 20 cm by 20 cm for 5 cm, 15 cm and 25 cm air gaps within 3%. The design was altered from a hexagonal array of round double cladded fibers to a square array of single cladded square fibers. The spatial resolution was improved from 0.242 lp mm-1 to 0.359 lp mm-1 at an MTF value of 0.5 from the original design to a square array of square fibers 0.5 mm wide separated by 0.25 mm of lead foil. With further optimization of the detector design it may be possible to increase spatial resolution for MV x-ray imaging while maintaining an adequate detection efficiency.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
A. Teymurazyan ◽  
G. Pang

A Monte Carlo simulation was used to study imaging and dosimetric characteristics of a novel design of megavoltage (MV) X-ray detectors for radiotherapy applications. The new design uses Cerenkov effect to convert X-ray energy absorbed in optical fibres into light for MV X-ray imaging. The proposed detector consists of a matrix of optical fibres aligned with the incident X rays and coupled to an active matrix flat-panel imager (AMFPI) for image readout. Properties, such as modulation transfer function, detection quantum efficiency (DQE), and energy response of the detector, were investigated. It has been shown that the proposed detector can have a zero-frequency DQE more than an order of magnitude higher than that of current electronic portal imaging device (EPID) systems and yet a spatial resolution comparable to that of video-based EPIDs. The proposed detector is also less sensitive to scattered X rays from patients than current EPIDs.


1994 ◽  
Vol 38 ◽  
pp. 615-624
Author(s):  
Bradley E. Patt ◽  
Jan S. Iwanczyk ◽  
Martin P. Tornai ◽  
Craig S. Levin ◽  
Edward J. Hoffman

Abstract A nineteen element mercuric iodide (HgI2) detector array has been developed in order to investigate the potential of using this technology for in-vivo x-ray and gamma-ray imaging. A prototype cross-grid detector array was constructed with hexagonal pixels of 1.9 mm diameter (active area = 3.28 mm2) and 0.2 mm thick septa. The overall detector active area is roughly 65 mm2. A detector thickness of 1.2 mm was used to achieve about 100% efficiency at 60 keV and 67% efficiency at 140 keV The detector fabrication, geometry and structure were optimized for charge collection and to minimize crosstalk between elements. A section of a standard high resolution cast-lead gamma-camera collimator was incorporated into the detector to provide collimation matching the discrete pixel geometry. Measurements of spectral and spatial performance of the array were made using 241-Am and 99m-Tc sources. These measurements were compared with similar measurements made using an optimized single HgI2 x-ray detector with active area of about 3 mm2 and thickness of 500 μm.


2005 ◽  
Author(s):  
Daiji Furuhashi ◽  
Daisuke Sakashita ◽  
Yu Ishida ◽  
Toru Aoki ◽  
Yasuhiro Tomita ◽  
...  

2003 ◽  
Vol 125 ◽  
pp. 332-336 ◽  
Author(s):  
D. Pacella ◽  
R. Bellazzini ◽  
A. Brez ◽  
G. Pizzicaroli

2021 ◽  
Author(s):  
James Day

To further develop a MV x-ray portal imaging device with high detection efficiency and adequate spatial resolution for image guided radiation therapy, the experimental results for a prototype detector were matched using Monte-Carlo software to then improve upon the design. The simulation and experiment were carried out using a 6 MV beam from a linear accelerator machine. An adequate match was obtained with the spatial resolution matching up to a MTF value of 0.2 and then diverging and the total signal registered in the central fiber was matched for field sizes ranging from 3 cm by 3 cm to 20 cm by 20 cm for 5 cm, 15 cm and 25 cm air gaps within 3%. The design was altered from a hexagonal array of round double cladded fibers to a square array of single cladded square fibers. The spatial resolution was improved from 0.242 lp mm-1 to 0.359 lp mm-1 at an MTF value of 0.5 from the original design to a square array of square fibers 0.5 mm wide separated by 0.25 mm of lead foil. With further optimization of the detector design it may be possible to increase spatial resolution for MV x-ray imaging while maintaining an adequate detection efficiency.


Sign in / Sign up

Export Citation Format

Share Document