scholarly journals The CMS Electromagnetic Calorimeter its performance and role in the discovery of a Higgs boson and perspectives for the future

2021 ◽  
Vol 6 (19) ◽  
pp. 140-143
Author(s):  
Tho Vu Quang ◽  
Hong Trinh Thi ◽  
Thanh Truong Tien

The decays of the Higgs boson H_1→Z_γ are discussed in the simplest 3-3-1 model. Analytic formulas for one-loop contributions were constructed using well-known general results. We will show that new particles predicted by this simplest 3-3-1 model may gice significant effects to this decay of the standard model-like Higgs boson. From numerical investigation, some details and properties of this decay are presented. the may be useful for comparing with the experimental results that will be detected in the future.


2010 ◽  
Vol 25 (09) ◽  
pp. 1739-1760 ◽  
Author(s):  
LUCIANO MANDELLI

In this paper it is shown how a sampling electromagnetic calorimeter based on the liquid argon technique satisfies the very demanding requirements of an experiment at the LHC. Section 2 discusses, using a simplified model, the performance that can be achieved in terms of response time, energy resolution and transverse granularity. Section 3 describes how the calorimeters are realized in ATLAS, their segmentation and how from the readout pulses the energy deposited in the calorimeter is computed. The motivations of a presampler detector in front of the calorimeter are also discussed. Section 4 describes how the energy, position and direction of an electron and a photon are computed. Finally, Sec. 5 briefly illustrates the rejection power of the calorimeter against the hadrons and mentions how a Higgs boson signal in the γγ channel can already be detected with a luminosity of 10 fb-1.


2018 ◽  
Vol 33 (11) ◽  
pp. 1841002 ◽  
Author(s):  
Wenyu Wang ◽  
Mengchao Zhang ◽  
Jun Zhao

Under current LHC and dark matter constraints, the general NMSSM can have self-interacting dark matter to explain the cosmological small structure. In this scenario, the dark matter is the light singlino-like neutralino [Formula: see text] which self-interacts through exchanging the light singlet-like scalars [Formula: see text]. These light scalars and neutralinos inevitably interact with the 125 GeV SM-like Higgs boson [Formula: see text], which cause the Higgs exotic decays [Formula: see text], [Formula: see text], [Formula: see text]. We first demonstrate the parameter space required by the explanation of the cosmological small structure and then display the Higgs exotic decays. We find that in such a parameter space the Higgs exotic decays can have branching ratios of a few percent, which should be accessible in the future [Formula: see text] colliders.


2014 ◽  
Vol 29 (09) ◽  
pp. 1430019
Author(s):  
Tejinder S. Virdee

In July 2012 the ATLAS and CMS experiments announced the discovery of a Higgs boson, confirming the conjecture put forward by Tom Kibble and others in the 1960s. This article will attempt to outline some of the challenges faced during the construction of the Large Hadron Collider and its experiments, their operation and performance, and selected physics results. In particular, results relating to the new heavy boson will be discussed as well as its properties and the future prospects for the LHC programme.


2021 ◽  
Vol 16 (12) ◽  
pp. T12008
Author(s):  
Y. Niu ◽  
Y. Shi ◽  
H. Zhao ◽  
Y. Zhang ◽  
M. Ruan ◽  
...  

Abstract A high-granularity scintillator calorimeter readout with silicon photomultipliers (SiPMs) is an electromagnetic calorimeter (ECAL) candidate for experiments at the Circular Electron Positron Collider (CEPC). A critical design parameter of this ECAL candidate is the dynamic range of the SiPMs. This study investigates the SiPM dynamic range required for the CEPC scintillator ECAL. A model is developed on the basis of the operation principles of SiPMs to describe the response of an SiPM to light pulses within one recovery period by considering the cross-talk effect, photon detection efficiency, and number of pixels. The response curve of a 10000-pixel SiPM predicted by the model is consistent with the measured curve within 2% for an incident light pulse of up to 12000 photons. The intrinsic fluctuations of the SiPM response naturally exist in this model, and the correction of the saturation effect in the SiPM response is investigated. Monte Carlo (MC) simulation shows that the algorithm can restore the response linearity of an SiPM for an incident light pulse in which the number of photons is up to around six times the number of SiPM pixels. The model and correction program are implemented for full simulation of the ZH production Z → νν, H → γγ channel to evaluate the impact of the SiPM dynamic range of the CEPC scintillator ECAL on the reconstructed Higgs boson mass and the sensitivity to the Higgs signal in this channel. The results show that the CEPC scintillator ECAL equipped with no less than 4000 SiPM pixels and operated with a light yield of 20 photon-electrons per channel for a single minimum ionizing particle can meet the requirements for Higgs boson precision measurement in the di-photon channel at the CEPC.


Sign in / Sign up

Export Citation Format

Share Document