Remote sea bottom classification utilizing the Ulvertech bottom profiler parametric source

2003 ◽  
Author(s):  
L.J. Satkowiak
2008 ◽  
Vol 123 (5) ◽  
pp. 3748-3748
Author(s):  
Ioannis Koukos ◽  
Theodoros Mavroidis ◽  
Georgios Vardoulias

2014 ◽  
Vol 12 (4) ◽  
pp. 590-595 ◽  
Author(s):  
Jesus Velasco ◽  
Inigo Molina ◽  
Estibaliz Martinez ◽  
Agueda Arquero ◽  
Juan F. Prieto

2005 ◽  
Vol 65 (4) ◽  
pp. 625-632 ◽  
Author(s):  
Rosa Freitas ◽  
Leandro Sampaio ◽  
Ana Maria Rodrigues ◽  
Victor Quintino

2009 ◽  
Vol 179 (2) ◽  
pp. 218
Author(s):  
V.I. Kaevitser ◽  
V.M. Razmanov
Keyword(s):  

Author(s):  
Norio YAMAKADO ◽  
Keiji HANDA ◽  
Yukinobu MIYASHITA
Keyword(s):  

2013 ◽  
Vol 5 (2) ◽  
Author(s):  
Syamsul Hidayat ◽  
Mulia Purba ◽  
Jorina Waworuntu

The purposes of this study were to determine the variability of temperature and its relation to regional processes in the Senunu Bay. The result showed clear vertical stratifications i.e., mixed layer thickness about 39-119 m with isotherm of 27°C, thermocline layer thickness about 83-204 m with isotherm of 14–26°C, and  the deeper layer from the thermocline lower limit to the sea bottom with isotherm <13°C. Temperature and the thickness of each layers varied with season in which during the Northwest Monsoon the temperature was warmer and the mixed layer was thicker than those during Southeast Monsoon. During Southeast Monsoon, the thermocline layer rose  about 24 m. The 2001, 2006, and 2009 (weak La Nina years),  the Indonesia Throughflow (ITF) carried warmer water, deepening thermocline depth and reducing upwelling strength.  In 2003 and 2008 thickening of mixed layer occurred in transition season  was believed  associated with the  arrival of Kelvin Wave from the west. In 2002 and 2004 (weak El Nino period,) ITF carries colder water shallowing thermocline depth and enhancing upwelling strength. In 2007 was believed to be related with positive IODM where the sea surface temperature were decreasing due to intensification of southeast wind which induced strong upwelling. The temperature spectral density of mixed layer and thermocline was influenced by annual, semi-annual, intra-annual and inter-annual period fluctuations. The cross-correlation between wind and temperature showed significant value in the annual period.  Keywords: temperature, thermocline, variability, ENSO, IODM.


1969 ◽  
Vol 35 ◽  
pp. 67-70 ◽  
Author(s):  
Niels Nørgaard-Pedersen ◽  
Sofia Ribeiro ◽  
Naja Mikkelsen ◽  
Audrey Limoges ◽  
Marit-Solveig Seidenkrantz

The marine record of the Independence–Danmark fjord system extending out to the Wandel Hav in eastern North Greenland (Fig. 1A) is little known due to the almost perennial sea-ice cover, which makes the region inaccessible for research vessels (Nørgaard-Pedersen et al. 2008), and only a few depth measurements have been conducted in the area. In 2015, the Villum Research Station, a new logistic base for scientific investigations, was opened at Station Nord. In contrast to the early exploration of the region, it is now possible to observe and track the seasonal character and changes of ice in the fjord system and the Arctic Ocean through remote sensing by satellite radar systems. Satellite data going back to the early 1980s show that the outer part of the Independence–Danmark fjord system is characterised by perennial sea ice whereas both the southern part of the fjord system and an area 20–30 km west of Station Nord are partly ice free during late summer (Fig. 1B). Hence, marine-orientated field work can be conducted from the sea ice using snow mobiles, and by drilling through the ice to reach the underlying water and sea bottom.


Sign in / Sign up

Export Citation Format

Share Document