Robust Acoustic Communication With Underwater Vehicles In Noisy And Jammed Shallow Water Environments

Author(s):  
J.A. Catipovic
2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Shingo Yoshizawa ◽  
Takashi Saito ◽  
Yusaku Mabuchi ◽  
Tomoya Tsukui ◽  
Shinichi Sawada

Reliable underwater acoustic communication is demanded for autonomous underwater vehicles (AUVs) and remotely operated underwater vehicles (ROVs). Orthogonal frequency-division multiplexing (OFDM) is robust with multipath interference; however, it is sensitive to Doppler. Doppler compensation is given by two-step processing of resampling and residual carrier frequency offset (CFO) compensation. This paper describes the improvement of a resampling technique. The conventional method assumes a constant Doppler shift during a communication frame. It cannot cope with Doppler fluctuation, where relative speeds between transmitter and receiver units are fluctuating. We propose a parallel resampling technique that a resampling range is extended by measured Doppler standard deviation. The effectiveness of parallel resampling has been confirmed in the communication experiment. The proposed method shows better performance in bit error rates (BERs) and frame error rates (FERs) compared with the conventional method.


Author(s):  
Yasin Yousif Al_Aboosi ◽  
Ahmad Zuri Sha'ameri

<p>The shallow water channel is an environment that is of particular interest to many research fields. An underwater acoustic channel is characterized as a multipath channel. Time-varying multipath propagation is one of the major factors that limit the acoustic communication performance in shallow water. This study conducts two underwater acoustic experiments in Tanjung Balau, Johor, Malaysia. A transducer and a hydrophone are submerged at different depths and separated by different distances. Linear frequency modulated (LFM) pulses are chosen as the main transmit signal for the experiments. The cross-correlation between the transmitted and received signals represents the impulse response of the channel (multipath profile). The results show that the amplitude of the successive paths will not rapidly decline, and vice versa, when the distance between the sender and the receiver increases. Moreover, the time difference between the different paths will be small in the case of distance increase. In other words, the successive paths will converge in time.</p>


2001 ◽  
Vol 109 (5) ◽  
pp. 2450-2451
Author(s):  
Natalia A. Sidorovskaia ◽  
Robert L. Field ◽  
Cheryl L. Sephus ◽  
George E. Ioup ◽  
Juliette W. Ioup

2008 ◽  
Vol 124 (4) ◽  
pp. 2596-2596
Author(s):  
Geoffrey Edelmann ◽  
Shaun Anderson ◽  
Paul Gendron

2012 ◽  
Vol 4 ◽  
pp. 227-231 ◽  
Author(s):  
Li Chuan Zhang ◽  
Ming Yong Liu ◽  
Fu Bin Zhang

In this paper, we propose an algorithm based on double acoustic measurement for cooperative navigation of multiple autonomous underwater vehicles. Research on cooperative navigation of AUV is an important topic to solve the navigation problem in long range and deep sea. We investigate the improvement in navigation accuracy. In the Leader-follow structure, the leader AUV is equipped with high precision navigation system, and the follow AUV is equipped with low precision navigation system. They all are equipped with acoustic device to measure relative location. Traditionally geometry triangulation method is used to calculate the position of follow AUV, the method may cause fault error solution. Double acoustic communication measurement method was designed, which fused the proprioceptive and exteroceptive sensors. The research results prove that the navigation accuracy has been improved effectively.


Sign in / Sign up

Export Citation Format

Share Document