Tensor-based Polynomial Features Generation for High-order Neural Networks

Author(s):  
Cyril Oswald ◽  
Adam Peichl ◽  
Tomas Vyhlidal
Keyword(s):  
2019 ◽  
Vol 41 (13) ◽  
pp. 3612-3625 ◽  
Author(s):  
Wang Qian ◽  
Wang Qiangde ◽  
Wei Chunling ◽  
Zhang Zhengqiang

The paper solves the problem of a decentralized adaptive state-feedback neural tracking control for a class of stochastic nonlinear high-order interconnected systems. Under the assumptions that the inverse dynamics of the subsystems are stochastic input-to-state stable (SISS) and for the controller design, Radial basis function (RBF) neural networks (NN) are used to cope with the packaged unknown system dynamics and stochastic uncertainties. Besides, the appropriate Lyapunov-Krosovskii functions and parameters are constructed for a class of large-scale high-order stochastic nonlinear strong interconnected systems with inverse dynamics. It has been proved that the actual controller can be designed so as to guarantee that all the signals in the closed-loop systems remain semi-globally uniformly ultimately bounded, and the tracking errors eventually converge in the small neighborhood of origin. Simulation example has been proposed to show the effectiveness of our results.


2020 ◽  
Vol 372 ◽  
pp. 33-39 ◽  
Author(s):  
Wenqi Shen ◽  
Xian Zhang ◽  
Yantao Wang

2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Yangfan Wang ◽  
Linshan Wang

This paper studies the problems of global exponential robust stability of high-order hopfield neural networks with time-varying delays. By employing a new Lyapunov-Krasovskii functional and linear matrix inequality, some criteria of global exponential robust stability for the high-order neural networks are established, which are easily verifiable and have a wider adaptive.


Sign in / Sign up

Export Citation Format

Share Document