Applying high resistance neutral grounding in medium voltage systems

Author(s):  
L J Kingrey ◽  
R Painter ◽  
A S Locker
2019 ◽  
Vol 84 ◽  
pp. 02007
Author(s):  
Lubomir Marciniak

For selective detection of earth faults in medium voltage networks, the general protection can be used, which unlike individual protections controls earth currents in all lines supplied from the substation. To detect high-resistance and arc faults, it is possible to use in such protections the details from wavelet decomposition of earth currents and the Bayesian conditional probability criterion. The paper presents a protection model using details of earth currents and the Bayesian criterion. Significant parameters of the model were determined: sampling frequency, wavelet types and decomposition levels, parameters of the probability density function and decision conditions. The effectiveness of the protection in the case of non-stationary high-resistance short-circuits in the network with natural asymmetry and harmonic distortion was also assessed.


2011 ◽  
Vol 47 (3) ◽  
pp. 1220-1231 ◽  
Author(s):  
L J Kingrey ◽  
R D Painter ◽  
A S Locker

Author(s):  
J W Steeds ◽  
R Vincent

We review the analytical powers which will become more widely available as medium voltage (200-300kV) TEMs with facilities for CBED on a nanometre scale come onto the market. Of course, high performance cold field emission STEMs have now been in operation for about twenty years, but it is only in relatively few laboratories that special modification has permitted the performance of CBED experiments. Most notable amongst these pioneering projects is the work in Arizona by Cowley and Spence and, more recently, that in Cambridge by Rodenburg and McMullan.There are a large number of potential advantages of a high intensity, small diameter, focussed probe. We discuss first the advantages for probes larger than the projected unit cell of the crystal under investigation. In this situation we are able to perform CBED on local regions of good crystallinity. Zone axis patterns often contain information which is very sensitive to thickness changes as small as 5nm. In conventional CBED, with a lOnm source, it is very likely that the information will be degraded by thickness averaging within the illuminated area.


Author(s):  
J.L. Batstone ◽  
J.M. Gibson ◽  
Alice.E. White ◽  
K.T. Short

High resolution electron microscopy (HREM) is a powerful tool for the determination of interface atomic structure. With the previous generation of HREM's of point-to-point resolution (rpp) >2.5Å, imaging of semiconductors in only <110> directions was possible. Useful imaging of other important zone axes became available with the advent of high voltage, high resolution microscopes with rpp <1.8Å, leading to a study of the NiSi2 interface. More recently, it was shown that images in <100>, <111> and <112> directions are easily obtainable from Si in the new medium voltage electron microscopes. We report here the examination of the important Si/Si02 interface with the use of a JEOL 4000EX HREM with rpp <1.8Å, in a <100> orientation. This represents a true structural image of this interface.


2011 ◽  
Vol 41 (19) ◽  
pp. 20
Author(s):  
JEFFREY S. EISENBERG
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document