Splitter Placement Problem on Directed Fiber Trees

Author(s):  
Tian Hu ◽  
Bao-Hua Zhao
2021 ◽  
Author(s):  
Abdelhakim Dafeur ◽  
Bernard Cousin ◽  
Rezki Ziani

Abstract In this paper, we investigate the splitter placement problem in an optical WDM network. The goal is to select a given number of MC nodes in the network such that the overall link cost of a multicast session is minimized. We present an exact formulation in integer linear programming ( ILP ) to find a set of trees that connects a source to a set of destination nodes. Then, four algorithms based on network topology metrics are proposed to select a given number of MC nodes in the network such that the overall link cost of a multicast session is minimized. The efficiency of the proposed algorithms is verified by simulation results.


Electronics ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 323
Author(s):  
Marwa A. Abdelaal ◽  
Gamal A. Ebrahim ◽  
Wagdy R. Anis

The widespread adoption of network function virtualization (NFV) leads to providing network services through a chain of virtual network functions (VNFs). This architecture is called service function chain (SFC), which can be hosted on top of commodity servers and switches located at the cloud. Meanwhile, software-defined networking (SDN) can be utilized to manage VNFs to handle traffic flows through SFC. One of the most critical issues that needs to be addressed in NFV is VNF placement that optimizes physical link bandwidth consumption. Moreover, deploying SFCs enables service providers to consider different goals, such as minimizing the overall cost and service response time. In this paper, a novel approach for the VNF placement problem for SFCs, called virtual network functions and their replica placement (VNFRP), is introduced. It tries to achieve load balancing over the core links while considering multiple resource constraints. Hence, the VNF placement problem is first formulated as an integer linear programming (ILP) optimization problem, aiming to minimize link bandwidth consumption, energy consumption, and SFC placement cost. Then, a heuristic algorithm is proposed to find a near-optimal solution for this optimization problem. Simulation studies are conducted to evaluate the performance of the proposed approach. The simulation results show that VNFRP can significantly improve load balancing by 80% when the number of replicas is increased. Additionally, VNFRP provides more than a 54% reduction in network energy consumption. Furthermore, it can efficiently reduce the SFC placement cost by more than 67%. Moreover, with the advantages of a fast response time and rapid convergence, VNFRP can be considered as a scalable solution for large networking environments.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2400
Author(s):  
Ziyong Zhang ◽  
Xiaoling Xu ◽  
Jinqiang Cui ◽  
Wei Meng

This paper is concerned with relative localization-based optimal area coverage placement using multiple unmanned aerial vehicles (UAVs). It is assumed that only one of the UAVs has its global position information before performing the area coverage task and that ranging measurements can be obtained among the UAVs by using ultra-wide band (UWB) sensors. In this case, multi-UAV relative localization and cooperative coverage control have to be run simultaneously, which is a quite challenging task. In this paper, we propose a single-landmark-based relative localization algorithm, combined with a distributed coverage control law. At the same time, the optimal multi-UAV placement problem was formulated as a quadratic programming problem by compromising between optimal relative localization and optimal coverage control and was solved by using Sequential Quadratic Programming (SQP) algorithms. Simulation results show that our proposed method can guarantee that a team of UAVs can efficiently localize themselves in a cooperative manner and, at the same time, complete the area coverage task.


2021 ◽  
Vol 26 (6) ◽  
pp. 1-22
Author(s):  
Chen Jiang ◽  
Bo Yuan ◽  
Tsung-Yi Ho ◽  
Xin Yao

Digital microfluidic biochips (DMFBs) have been a revolutionary platform for automating and miniaturizing laboratory procedures with the advantages of flexibility and reconfigurability. The placement problem is one of the most challenging issues in the design automation of DMFBs. It contains three interacting NP-hard sub-problems: resource binding, operation scheduling, and module placement. Besides, during the optimization of placement, complex constraints must be satisfied to guarantee feasible solutions, such as precedence constraints, storage constraints, and resource constraints. In this article, a new placement method for DMFB is proposed based on an evolutionary algorithm with novel heuristic-based decoding strategies for both operation scheduling and module placement. Specifically, instead of using the previous list scheduler and path scheduler for decoding operation scheduling chromosomes, we introduce a new heuristic scheduling algorithm (called order scheduler) with fewer limitations on the search space for operation scheduling solutions. Besides, a new 3D placer that combines both scheduling and placement is proposed where the usage of the microfluidic array over time in the chip is recorded flexibly, which is able to represent more feasible solutions for module placement. Compared with the state-of-the-art placement methods (T-tree and 3D-DDM), the experimental results demonstrate the superiority of the proposed method based on several real-world bioassay benchmarks. The proposed method can find the optimal results with the minimum assay completion time for all test cases.


2020 ◽  
pp. 136943322094719
Author(s):  
Xianrong Qin ◽  
Pengming Zhan ◽  
Chuanqiang Yu ◽  
Qing Zhang ◽  
Yuantao Sun

Optimal sensor placement is an important component of a reliability structural health monitoring system for a large-scale complex structure. However, the current research mainly focuses on optimizing sensor placement problem for structures without any initial sensor layout. In some cases, the experienced engineers will first determine the key position of whole structure must place sensors, that is, initial sensor layout. Moreover, current genetic algorithm or partheno-genetic algorithm will change the position of the initial sensor locations in the iterative process, so it is unadaptable for optimal sensor placement problem based on initial sensor layout. In this article, an optimal sensor placement method based on initial sensor layout using improved partheno-genetic algorithm is proposed. First, some improved genetic operations of partheno-genetic algorithm for sensor placement optimization with initial sensor layout are presented, such as segmented swap, reverse and insert operator to avoid the change of initial sensor locations. Then, the objective function for optimal sensor placement problem is presented based on modal assurance criterion, modal energy criterion, and sensor placement cost. At last, the effectiveness and reliability of the proposed method are validated by a numerical example of a quayside container crane. Furthermore, the sensor placement result with the proposed method is better than that with effective independence method without initial sensor layout and the traditional partheno-genetic algorithm.


Sign in / Sign up

Export Citation Format

Share Document