2020 ◽  
Vol 4 (POPL) ◽  
pp. 1-32 ◽  
Author(s):  
Sam Westrick ◽  
Rohan Yadav ◽  
Matthew Fluet ◽  
Umut A. Acar
Keyword(s):  

2014 ◽  
Vol 49 (6) ◽  
pp. 15-25 ◽  
Author(s):  
Rishi Surendran ◽  
Raghavan Raman ◽  
Swarat Chaudhuri ◽  
John Mellor-Crummey ◽  
Vivek Sarkar
Keyword(s):  

Author(s):  
S. Blom ◽  
S. Darabi ◽  
M. Huisman ◽  
M. Safari

AbstractA commonly used approach to develop deterministic parallel programs is to augment a sequential program with compiler directives that indicate which program blocks may potentially be executed in parallel. This paper develops a verification technique to reason about such compiler directives, in particular to show that they do not change the behaviour of the program. Moreover, the verification technique is tool-supported and can be combined with proving functional correctness of the program. To develop our verification technique, we propose a simple intermediate representation (syntax and semantics) that captures the main forms of deterministic parallel programs. This language distinguishes three kinds of basic blocks: parallel, vectorised and sequential blocks, which can be composed using three different composition operators: sequential, parallel and fusion composition. We show how a widely used subset of OpenMP can be encoded into this intermediate representation. Our verification technique builds on the notion of iteration contract to specify the behaviour of basic blocks; we show that if iteration contracts are manually specified for single blocks, then that is sufficient to automatically reason about data race freedom of the composed program. Moreover, we also show that it is sufficient to establish functional correctness on a linearised version of the original program to conclude functional correctness of the parallel program. Finally, we exemplify our approach on an example OpenMP program, and we discuss how tool support is provided.


Author(s):  
Judit Abardia-Evéquoz ◽  
Andreas Bernig

AbstractWe show the existence of additive kinematic formulas for general flag area measures, which generalizes a recent result by Wannerer. Building on previous work by the second named author, we introduce an algebraic framework to compute these formulas explicitly. This is carried out in detail in the case of the incomplete flag manifold consisting of all $$(p+1)$$ ( p + 1 ) -planes containing a unit vector.


2021 ◽  
Vol 31 (3) ◽  
Author(s):  
Pierre-Philippe Dechant

AbstractRecent work has shown that every 3D root system allows the construction of a corresponding 4D root system via an ‘induction theorem’. In this paper, we look at the icosahedral case of $$H_3\rightarrow H_4$$ H 3 → H 4 in detail and perform the calculations explicitly. Clifford algebra is used to perform group theoretic calculations based on the versor theorem and the Cartan–Dieudonné theorem, giving a simple construction of the $${\mathrm {Pin}}$$ Pin and $${\mathrm {Spin}}$$ Spin covers. Using this connection with $$H_3$$ H 3 via the induction theorem sheds light on geometric aspects of the $$H_4$$ H 4 root system (the 600-cell) as well as other related polytopes and their symmetries, such as the famous Grand Antiprism and the snub 24-cell. The uniform construction of root systems from 3D and the uniform procedure of splitting root systems with respect to subrootsystems into separate invariant sets allows further systematic insight into the underlying geometry. All calculations are performed in the even subalgebra of $${\mathrm {Cl}}(3)$$ Cl ( 3 ) , including the construction of the Coxeter plane, which is used for visualising the complementary pairs of invariant polytopes, and are shared as supplementary computational work sheets. This approach therefore constitutes a more systematic and general way of performing calculations concerning groups, in particular reflection groups and root systems, in a Clifford algebraic framework.


2014 ◽  
Vol 49 (8) ◽  
pp. 389-390
Author(s):  
Kunal Agrawal ◽  
Jeremy T. Fineman ◽  
Brendan Sheridan ◽  
Jim Sukha ◽  
Robert Utterback

1993 ◽  
Vol 28 (8) ◽  
pp. 99-108 ◽  
Author(s):  
Michael Philippsen ◽  
Ernst A. Heinz ◽  
Paul Lukowicz
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document