Virtual Damping Control Strategy to Improve Anti-Disturbance Performance for PMSM Driven Electric Vehicle under Rough Road Conditions

Author(s):  
Fuqiang Wu ◽  
Xiaoqiang Li ◽  
Mingli Ji ◽  
Miao Xie ◽  
Jiming Ye
2015 ◽  
Vol 713-715 ◽  
pp. 756-759
Author(s):  
Xu Guang Zhang ◽  
Zhen Xie

A flux damping control strategy was proposed to accelerate the decay of stator flux and restrain stator, rotor current and torque oscillation caused by grid voltage dips. Firstly, this paper analyzes the simplified mathematical model of DFIG during symmetrical voltage dips. Then, the mechanism of flux damping control strategy to restrain stator, rotor current oscillation and increase flux damping was analyzed. The flux damping control strategy can increase the damping of stator side, which accelerates the decay of the stator flux natural component and improve the dynamic LVRT performance of DFIG. The correctness and effectiveness of this method is verified by MATLAB/Simulink simulation results.


2011 ◽  
Vol 383-390 ◽  
pp. 4151-4157
Author(s):  
Wen Qi Tian ◽  
Jing Han He ◽  
Jiu Chun Jiang ◽  
Cheng Gang Du

With the increase of new energy power generation, the requirement of smart grid and the popularity of electric vehicles, the research focus on V2G. With Electric vehicles being distributed energy storage or distributed generation, peak regulation in power system is involved in important functions of V2G. In order to achieve peak regulation function, the paper has analyzed the control relationship between the electric vehicles, V2G station and electric vehicle charge\ discharge control center, presented charge and discharge control strategy based on the two levels of electric vehicle charge\discharging control center and V2G station control layer and introduced algorithms and examples to achieve these strategies.


Sign in / Sign up

Export Citation Format

Share Document