State-space black-box model identification of a voltage-source converter with LCL filter

Author(s):  
F. Huerta ◽  
S. Cobreces ◽  
F. J. Rodriguez ◽  
M. Moranchel ◽  
I. Sanz
2021 ◽  
Vol 11 (19) ◽  
pp. 9175
Author(s):  
Malte Thielmann ◽  
Florian Hans

In this paper, a novel hysteresis-based current control approach is presented. The basis of the developed control approach is the theory of switched systems, in particular, the system class of switched systems with multiple equilibria. The proposed approach guarantees the convergence of the state trajectory into a region around a reference trajectory by selective switching between the individual subsystems. Here, the reference trajectory is allowed to be time varying, but lies within the state space spanned by the subsystem equilibria. Since already published approaches only show convergence to a common equilibrium of all subsystems, the extension to the mentioned state space is a significant novelty. Moreover, the approach is not limited to the number of state variables, nor to the number of subsystems. Thus, the applicability to a large number of systems is given. In the course of the paper, the theoretical basics of the approach are first explained by referring to a trivial example system. Then, it is shown how the theory can be applied to a practical application of a voltage source converter that is connected to a permanent-magnet synchronous motor. After deriving the limits of the presented control strategy, a simulation study confirms the applicability on the converter system. The paper closes with a detailed discussion about the given results.


Sign in / Sign up

Export Citation Format

Share Document