Transient stability of power systems with high penetration of DFIG based wind farms

Author(s):  
Libao Shi ◽  
Shiqiang. Dai ◽  
Yixin Ni ◽  
Liangzhong Yao ◽  
Masoud Bazargan
2013 ◽  
Vol 1 (2) ◽  
pp. 134-141 ◽  
Author(s):  
Lu Miao ◽  
Jiakun Fang ◽  
Jinyu Wen ◽  
Weihua Luo

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2207
Author(s):  
Jesus Castro Martinez ◽  
Santiago Arnaltes ◽  
Jaime Alonso-Martinez ◽  
Jose Luis Rodriguez Amenedo

Power system inertia is being reduced because of the increasing penetration of renewable energies, most of which use power electronic interfaces with the grid. This paper analyses the contribution of inertia emulation and droop control to the power system stability. Although inertia emulation may appear the best option to mitigate frequency disturbances, a thorough analysis of the shortcomings that face real-time implementations shows the opposite. Measurement noise and response delay for inertia emulation hinder controller performance, while the inherently fast droop response of electronic converters provides better frequency support. System stability, expressed in terms of rate of change of frequency (ROCOF) and frequency nadir, is therefore improved with droop control, compared to inertia emulation.


2020 ◽  
Vol 10 (24) ◽  
pp. 9034
Author(s):  
Junji Tamura ◽  
Atsushi Umemura ◽  
Rion Takahashi ◽  
Atsushi Sakahara ◽  
Fumihito Tosaka ◽  
...  

The penetration level of large-scale wind farms into power systems has been increasing significantly, and the frequency stability and transient stability of the power systems during and after a network fault can be negatively affected. This paper proposes a new control method to improve the stability of power systems that are composed of large wind farms, as well as usual synchronous generators. The new method is a coordinated controlling method between an adjustable-speed pumping generator (ASG) and a battery. The coordinated system is designed to improve power system stability during a disconnection in a fixed-rotor-speed wind turbine with a squirrel cage-type induction generator (FSWT-SCIG)-based wind farm due to a network fault, in which a battery first responds quickly to the system frequency deviation due to a grid fault and improves the frequency nadir, and then the ASG starts to supply compensatory power to recover the grid frequency to the rated frequency. The performance of the proposed system was confirmed through simulation studies on a power system model consisting of usual synchronous generators (SGs), an ASG, a battery, and an SCIG-based wind farm. Simulation results demonstrated that the proposed control system can enhance the stability of the power system effectively.


Author(s):  
D. Wang ◽  
J.L. Rueda Torres ◽  
A. Perilla ◽  
E. Rakhshani ◽  
P. Palensky ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document