scholarly journals Contribution of Wind Farms to the Stability of Power Systems with High Penetration of Renewables

Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2207
Author(s):  
Jesus Castro Martinez ◽  
Santiago Arnaltes ◽  
Jaime Alonso-Martinez ◽  
Jose Luis Rodriguez Amenedo

Power system inertia is being reduced because of the increasing penetration of renewable energies, most of which use power electronic interfaces with the grid. This paper analyses the contribution of inertia emulation and droop control to the power system stability. Although inertia emulation may appear the best option to mitigate frequency disturbances, a thorough analysis of the shortcomings that face real-time implementations shows the opposite. Measurement noise and response delay for inertia emulation hinder controller performance, while the inherently fast droop response of electronic converters provides better frequency support. System stability, expressed in terms of rate of change of frequency (ROCOF) and frequency nadir, is therefore improved with droop control, compared to inertia emulation.

2020 ◽  
Vol 10 (24) ◽  
pp. 9034
Author(s):  
Junji Tamura ◽  
Atsushi Umemura ◽  
Rion Takahashi ◽  
Atsushi Sakahara ◽  
Fumihito Tosaka ◽  
...  

The penetration level of large-scale wind farms into power systems has been increasing significantly, and the frequency stability and transient stability of the power systems during and after a network fault can be negatively affected. This paper proposes a new control method to improve the stability of power systems that are composed of large wind farms, as well as usual synchronous generators. The new method is a coordinated controlling method between an adjustable-speed pumping generator (ASG) and a battery. The coordinated system is designed to improve power system stability during a disconnection in a fixed-rotor-speed wind turbine with a squirrel cage-type induction generator (FSWT-SCIG)-based wind farm due to a network fault, in which a battery first responds quickly to the system frequency deviation due to a grid fault and improves the frequency nadir, and then the ASG starts to supply compensatory power to recover the grid frequency to the rated frequency. The performance of the proposed system was confirmed through simulation studies on a power system model consisting of usual synchronous generators (SGs), an ASG, a battery, and an SCIG-based wind farm. Simulation results demonstrated that the proposed control system can enhance the stability of the power system effectively.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 5047
Author(s):  
Diala Nouti ◽  
Ferdinanda Ponci ◽  
Antonello Monti

The increasing and fast deployment of distributed generation is posing challenges to the operation and control of power systems due to the resulting reduction in the overall system rotational inertia and damping. Therefore, it becomes quite crucial for the transmission system operator to monitor the varying system inertia and damping in order to take proper actions to maintain the system stability. This paper presents an inertia estimation algorithm for low-inertia systems to estimate the inertia (both mechanical and virtual) and damping of systems with mixed generation resources and/or the resource itself. Moreover, the effect of high penetration of distributed energy resources and the resulting heterogeneous distribution of inertia on the overall system inertia estimation is investigated. A comprehensive set of case studies and scenarios of the IEEE 39-bus system provides results to demonstrate the performance of the proposed estimator.


2014 ◽  
Vol 960-961 ◽  
pp. 1588-1591
Author(s):  
Xiang Dong Zhao ◽  
Xin Zhao ◽  
Ming Jun Lv ◽  
Jian Guo Liu ◽  
Feng Zhen Liu ◽  
...  

The Internet and the gradual implementation of the continuous power grid market in recent years make the power system more complex under different operating environment. Safe and stable operation of power grids have become increasingly important . With the rapidf development of the grid and constant innovation, safe and stable operation also has a new requirement , because the rapid development of the power system brings more This paper analyzes the causes of blackouts and reviews security of the power system stability problems related to measures on the security and stability of the power system operation .


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Xiao-ling Su ◽  
Lai-jun Chen ◽  
Jun Yang ◽  
Zhengxi Li ◽  
Peng Zhou ◽  
...  

Power systems have developed significantly because of the increasing share of renewable energy sources (RESs). Despite the advantages, they also bring inevitable challenges to power system stability, especially under extreme fault conditions. This paper presents a practical active support control strategy for RESs to support the power grid under extreme fault conditions. The proof process is taken in an AC-DC hybrid power grid integrated with large capacity of PV stations and wind farms. The on-site engineering test results reflect that RESs bring potential risks in the AC-DC hybrid power grid operation and validate the excellent engineering practical features of the proposed control strategy. In addition, test results also reveal predisposing factors of power system instability which are missing in the simulation and fault simulation device-based testing results. They prove the outstanding advantages of on-site engineering tests.


2013 ◽  
Vol 391 ◽  
pp. 291-294
Author(s):  
Xiao Ning Xu ◽  
Xue Song Zhou

In recent years, wind power in China developed rappidly. More and more problems occurred with the integration of large-scale wind power. Arounding the issues of power system stability which are resulted from the integration of wind power and ite relevant technology, this paper mainly introduced the voltage stability from the angle of the definition and the classification, and analyzed power systems which contains wind farms from the angle of the research contents and methods of static and dynamic voltage stability, especially emphasizing the necessity of the bifurcation theory used in power system contains wind power.


2012 ◽  
Vol 433-440 ◽  
pp. 1794-1801 ◽  
Author(s):  
Jian Dong Duan ◽  
Rui Li ◽  
Lin An

Squirrel-cage induction generator (SCIG), as its structural and economic advantages, has been widely utilized in large wind farms in China. However, the large wind farm composed of induction generators will cause obvious problems to the power system stability due to the dependency on reactive power. At the same time, Doubly-fed induction generator (DFIG), as a new type of wind turbine generator, has excellent dynamic characteristics for operation of wind farms. With the increase in penetration of wind power in power systems, more and more wind farms will use both SCIG and DFIG. In this case, the dynamic characteristic of wind farm on power systems is becoming an important issue especially in terms of the voltage stability. This article is to show by means of simulations the dynamic performance of wind farm linked to power system under the circumstances of network disturbances. Furthermore, the interaction between the SCIGs and DFIGs has also been investigated. A detailed model of wind farms is presented through the plat root of MATLAB/SIMULINK. The simulation results demonstrate that the DFIG applications will largely improve the dynamic performance of wind farm in certain conditions, if the DFIGs could be applied reasonably, the voltage stability of the wind farm will be largely improved and even low voltage ride through(LVRT) characteristic of SCIGs, which may be a good solution to reduce the high dependence of costly reactive power compensation equipment(Some flexible AC transmission systems devices like SVC, STATCOM) to some extent.


2012 ◽  
Vol 2 (1) ◽  
Author(s):  
Guo-Jie Li ◽  
Tek Lie

AbstractInter-area oscillations are serious problems to large-scale power systems. A decentralized H ∞ generator excitation controller of a power system is proposed to damp the inter-area oscillations and to enhance power system stability. The design procedure for a linear composite system is presented in terms of positive semi-definite solutions to modified algebraic inequalities. The resulting controller guarantees closed-loop stability, robustness and an H ∞-norm bound on disturbance attenuation even under uncertainties such as high frequency noise. The control is decentralized in the sense that the control of each generator depends on local information only. The effectiveness of the H ∞ controller is demonstrated through digital simulation studies on a two-machine power system.


Sign in / Sign up

Export Citation Format

Share Document