A novel modeling and control method for three-phase PWM converters

Author(s):  
Y. Ye ◽  
M. Kazerani ◽  
V.H. Quintana
2020 ◽  
Vol 7 (1) ◽  
pp. 10-18
Author(s):  
Songcen Wang ◽  
Xiaokang Wu ◽  
Ying Yang ◽  
Cong Zhu ◽  
Zhen Wu ◽  
...  

AbstractAiming at the influence of coupling coefficient variation on the output voltage of a high-power LCC-S topology inductively coupled power transfer (ICPT) system, a synchronous three-phase triple-parallel Buck converter is used as the voltage adjustment unit. The control method for the three-phase current sharing of synchronous three-phase triple-parallel Buck converter and the constant voltage output ICPT system under the coupling coefficient variation is studied. Firstly, the hybrid model consisting of the circuit averaging model of the three-phase triple-parallel Buck converter and the generalized state-space average model for the LCC-S type ICPT system is established. Then, the control methods for three-phase current sharing of the synchronous three-phase triple-parallel Buck converter and constant voltage output of ICPT system are studied to achieve the multi-objective integrated control of the system. Finally, a 3.3 kW wireless charging system platform is built, the experimental results have verified the effectiveness of the proposed modeling and control method, and demonstrated the stability of the ICPT system.


2001 ◽  
Vol 37 (6) ◽  
pp. 1807-1816 ◽  
Author(s):  
C.B. Jacobina ◽  
M.B. de Rossiter Correa ◽  
R.F. Pinheiro ◽  
E.R.C. da Silva ◽  
A.M.N. Lima

2016 ◽  
Vol 4 (2) ◽  
pp. 1-16
Author(s):  
Ahmed S. Khusheef

 A quadrotor is a four-rotor aircraft capable of vertical take-off and landing, hovering, forward flight, and having great maneuverability. Its platform can be made in a small size make it convenient for indoor applications as well as for outdoor uses. In model there are four input forces that are essentially the thrust provided by each propeller attached to each motor with a fixed angle. The quadrotor is basically considered an unstable system because of the aerodynamic effects; consequently, a close-loop control system is required to achieve stability and autonomy. Such system must enable the quadrotor to reach the desired attitude as fast as possible without any steady state error. In this paper, an optimal controller is designed based on a Proportional Integral Derivative (PID) control method to obtain stability in flying the quadrotor. The dynamic model of this vehicle will be also explained by using Euler-Newton method. The mechanical design was performed along with the design of the controlling algorithm. Matlab Simulink was used to test and analyze the performance of the proposed control strategy. The experimental results on the quadrotor demonstrated the effectiveness of the methodology used.


Sign in / Sign up

Export Citation Format

Share Document