A mathematical model for a stability-enhanced DC distribution system for power system integration of plug-in electric vehicles

Author(s):  
Mansour Tabari ◽  
Amirnaser Yazdani
2021 ◽  
Vol 9 ◽  
Author(s):  
Wei Teng ◽  
Yuejiao Wang ◽  
Shumin Sun ◽  
Yan Cheng ◽  
Peng Yu ◽  
...  

DC power distribution systems will play an important role in the future urban power distribution system, while the charging and discharging requirements of electric vehicles have a great impact on the voltage stability of the DC power distribution systems. A robust control method based on H∞ loop shaping method is proposed to suppress the effect of uncertain integration on voltage stability of DC distribution system. The results of frequency domain analysis and time domain simulation show that the proposed robust controller can effectively suppress the DC bus voltage oscillation caused by the uncertain integration of electric vehicle, and the robustness is strong.


2019 ◽  
Vol 24 (3) ◽  
pp. 377-384
Author(s):  
Ramón Alfonso Gallego Rendón ◽  
Ricardo Alberto Hincapié Isaza ◽  
Fabio Andrés Osorio Cruz

In this paper, a methodology that allows to determine the location and optimal sizing of battery swap stations for electric vehicles in distribution networks is proposed, which objective is to minimize investment costs and technical losses of the network. The set of constraints is associated with technical and operational characteristics of the system. To solve the mathematical model, an evolutionary algorithm is used. To verify the efficiency of the methodology, a Colombian distribution system is used, where the obtained results validate what is proposed in this work.


Author(s):  
Zakaria Al-Omari ◽  
A. Hamzeh ◽  
Sadeq A. Hamed ◽  
A. Sandouk ◽  
G. Aldahim

One of the key functions of the Distribution System Operators (DSOs) of<br />electrical power systems (EPS) is to minimize the transmission and<br />distribution power losses and consequently the operational cost. This<br />objective can be reached by operating the system in an optimal mode which is performed by adjusting control parameters such as on-load tap changer (OLTC) settings of transformers, generator excitation levels, and VAR compensators switching. The deviation from operation optimality will result in additional losses and additional operational cost of the power system. Reduction of the operational cost increases the power system efficiency and provides a significant reduction in total energy consumption. This paper proposes a mathematical model for minimizing the additional (add-on) costs based on Design of Experiments (DOE). The relation between add-on operational costs and OLTC settings is established by means of regression statistical analysis. The developed model is applied to a 20-bustest network. The regression curve fitting procedure requires simulation experiments which have been carried out by the DigSilent PowerFactory 13.2 Program for performing network power flow. The results show the effectiveness of the model. The research work raises the importance the power system operation management of the EPS where the Distribution System Operator can avoid the add-on operational costs by continuous correction to get an operation mode close to optimality.


2021 ◽  
Author(s):  
Nikoo Kouchakipour

With the rising potential for the employment of low- and medium-voltage direct-current (dc) electric power distribution systems, most notably for a more efficient integration of plug-in electric vehicles and such other distributed energy resources as photovoltaic (PV) panels, there is a need for robust ac/dc electronic power converters that can interface such dc distribution systems with the legacy alternating current (ac) power system. Thus, this thesis proposes a new single-stage low-voltage three-phase ac-dc power converter that is simple structurally, en- ables a bidirectional power exchanges between the ac and dc distribution systems, and can handle short-circuit faults at its dc as well as ac sides. The proposed converter consists of three legs, corresponding to the three phases of the host ac grid, each of which hosting two full-bridge submodule (FBSM), in an architecture that can be regarded as a special case of the so-called modular multi-level converter (MMC). Thus, at the dc port each FBSM is connected in parallel with a corresponding capacitor, while the ac voltage of each phase is synthesized by the coordinated sinusoidal pulse-width modulation (SPWM) of the two corresponding FBSMs. This architecture allows the generation of low-distortion ac voltage while it also provides the converter with the very important dc fault current blocking capability since, upon the detection of a short circuit across the converter dc port, the switches of the FBSMs are turned off and disallow the flow of any dc current. The thesis also presents a mathematical model for the converter, for analysis and control design purposes. Thus, the control for the regulation of the overall dc-side voltage, as well as those for the regulation of the dc voltages of the FBSMs are devised based on the aforementioned mathematical model and presented with details. It is further shown that the voltage conversion ratio of the proposed converter is the same as that offered by a conventional voltage-sourced converter (VSC), whereas the VSC is vulnerable to dc- side shorts. The proposed converter can be extended to medium-voltage levels by multi- plying the number of FBSMs in each leg. The effectiveness of the proposed converter and its controls is demonstrated through time-domain simulation studies conducted on a topological model of the converter in PSCAD/EMTDC software environment.


Sign in / Sign up

Export Citation Format

Share Document