Infrared Dim-small Object Detection Algorithm Based on Saliency Map Combined with Target Motion Feature

Author(s):  
WenWen Zhang ◽  
ZhiChao Lian
2018 ◽  
Vol 47 (7) ◽  
pp. 703005 ◽  
Author(s):  
吴天舒 Wu Tianshu ◽  
张志佳 Zhang Zhijia ◽  
刘云鹏 Liu Yunpeng ◽  
裴文慧 Pei Wenhui ◽  
陈红叶 Chen Hongye

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Haotian Li ◽  
Kezheng Lin ◽  
Jingxuan Bai ◽  
Ao Li ◽  
Jiali Yu

In order to improve the detection rate of the traditional single-shot multibox detection algorithm in small object detection, a feature-enhanced fusion SSD object detection algorithm based on the pyramid network is proposed. Firstly, the selected multiscale feature layer is merged with the scale-invariant convolutional layer through the feature pyramid network structure; at the same time, the multiscale feature map is separately converted into the channel number using the scale-invariant convolution kernel. Then, the obtained two sets of pyramid-shaped feature layers are further feature fused to generate a set of enhanced multiscale feature maps, and the scale-invariant convolution is performed again on these layers. Finally, the obtained layer is used for detection and localization. The final location coordinates and confidence are output after nonmaximum suppression. Experimental results on the Pascal VOC 2007 and 2012 datasets confirm that there is a 8.2% improvement in mAP compared to the original SSD and some existing algorithms.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1926
Author(s):  
Kai Yin ◽  
Juncheng Jia ◽  
Xing Gao ◽  
Tianrui Sun ◽  
Zhengyin Zhou

A series of sky surveys were launched in search of supernovae and generated a tremendous amount of data, which pushed astronomy into a new era of big data. However, it can be a disastrous burden to manually identify and report supernovae, because such data have huge quantity and sparse positives. While the traditional machine learning methods can be used to deal with such data, deep learning methods such as Convolutional Neural Networks demonstrate more powerful adaptability in this area. However, most data in the existing works are either simulated or without generality. How do the state-of-the-art object detection algorithms work on real supernova data is largely unknown, which greatly hinders the development of this field. Furthermore, the existing works of supernovae classification usually assume the input images are properly cropped with a single candidate located in the center, which is not true for our dataset. Besides, the performance of existing detection algorithms can still be improved for the supernovae detection task. To address these problems, we collected and organized all the known objectives of the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) and the Popular Supernova Project (PSP), resulting in two datasets, and then compared several detection algorithms on them. After that, the selected Fully Convolutional One-Stage (FCOS) method is used as the baseline and further improved with data augmentation, attention mechanism, and small object detection technique. Extensive experiments demonstrate the great performance enhancement of our detection algorithm with the new datasets.


Author(s):  
Wei Sun ◽  
Liang Dai ◽  
Xiaorui Zhang ◽  
Pengshuai Chang ◽  
Xiaozheng He

2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Guo X. Hu ◽  
Zhong Yang ◽  
Lei Hu ◽  
Li Huang ◽  
Jia M. Han

The existing object detection algorithm based on the deep convolution neural network needs to carry out multilevel convolution and pooling operations to the entire image in order to extract a deep semantic features of the image. The detection models can get better results for big object. However, those models fail to detect small objects that have low resolution and are greatly influenced by noise because the features after repeated convolution operations of existing models do not fully represent the essential characteristics of the small objects. In this paper, we can achieve good detection accuracy by extracting the features at different convolution levels of the object and using the multiscale features to detect small objects. For our detection model, we extract the features of the image from their third, fourth, and 5th convolutions, respectively, and then these three scales features are concatenated into a one-dimensional vector. The vector is used to classify objects by classifiers and locate position information of objects by regression of bounding box. Through testing, the detection accuracy of our model for small objects is 11% higher than the state-of-the-art models. In addition, we also used the model to detect aircraft in remote sensing images and achieved good results.


Author(s):  
Tripop Tongboonsong ◽  
Akkarat Boonpoonga ◽  
Kittisak Phaebua ◽  
Titipong Lertwiriyaprapa ◽  
Lakkhana Bannawat

Sign in / Sign up

Export Citation Format

Share Document