feature enhancement
Recently Published Documents


TOTAL DOCUMENTS

408
(FIVE YEARS 180)

H-INDEX

23
(FIVE YEARS 5)

2022 ◽  
Vol 72 ◽  
pp. 103343
Author(s):  
Zheng Kun ◽  
Zhang Yue ◽  
Chang Peng ◽  
Li Hui

Author(s):  
Bowen Yuan ◽  
Bairu Chen ◽  
Zhiyi Tan ◽  
Xi Shao ◽  
Bing-Kun Bao
Keyword(s):  

2022 ◽  
Vol 14 (2) ◽  
pp. 242
Author(s):  
Haiyang Pang ◽  
Aiwu Zhang ◽  
Shengnan Yin ◽  
Jiaxin Zhang ◽  
Gang Dong ◽  
...  

Estimating the carbon (C), nitrogen (N), and phosphorus (P) contents of a large-span grassland transect is essential for evaluating ecosystem functioning and monitoring biogeochemical cycles. However, the field measurements are scattered, such that they cannot indicate the continuous gradient change in the grassland transect. Although remote sensing methods have been applied for the estimation of nutrient elements at the local scale in recent years, few studies have considered the effective estimation of C, N, and P contents over large-span grassland transects with complex environment including a variety of grassland types (i.e., meadow, typical grassland, and desert grassland). In this paper, an information enhancement algorithm (involving spectral enhancement, regional enhancement, and feature enhancement) is used to extract the weak information related to C, N, and P. First, the spectral simulation algorithm is used to enhance the spectral information of Sentinel-2 imagery. Then, the enhanced spectra and meteorological data are fused to express regional characteristics and the fractional differential (FD) algorithm is used to extract sensitive spectral features related to C, N, and P, in order to construct a partial least-squares regression (PLSR) model. Finally, the C, N, and P contents are estimated over a West–East grassland transect in Inner Mongolia, China. The results demonstrate that: (i) the contents of C, N, and P in large-span transects can be effectively estimated through use of the information enhancement method involving spectral enhancement, regional feature enhancement, and information enhancement, for which the estimation accuracies (R2) were 0.88, 0.78, and 0.85, respectively. Compared with the estimation results of raw Sentinel-2 imagery, the RMSE was reduced by 3.42 g/m2, 0.14 g/m2, and 13.73 mg/m2, respectively; and (ii) the continuous change trend and spatial distribution characteristics of C, N, and P contents in the west–east transect of the Inner Mongolia Plateau were obtained, which showed decreasing trends in C, N, and P contents from east to west and the characteristics of meadow > typical grassland > desert grassland. Thus, the information enhancement algorithm can help to improve estimates of C, N, and P contents when considering large-span grassland transects.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 200
Author(s):  
Qingyan Wang ◽  
Qi Zhang ◽  
Xintao Liang ◽  
Yujing Wang ◽  
Changyue Zhou ◽  
...  

For facing of the problems caused by the YOLOv4 algorithm’s insensitivity to small objects and low detection precision in traffic light detection and recognition, the Improved YOLOv4 algorithm is investigated in the paper using the shallow feature enhancement mechanism and the bounding box uncertainty prediction mechanism. The shallow feature enhancement mechanism is used to extract features from the network and improve the network’s ability to locate small objects and color resolution by merging two shallow features at different stages with the high-level semantic features obtained after two rounds of upsampling. Uncertainty is introduced in the bounding box prediction mechanism to improve the reliability of the prediction of the bounding box by modeling the output coordinates of the prediction bounding box and adding the Gaussian model to calculate the uncertainty of the coordinate information. The LISA traffic light data set is used to perform detection and recognition experiments separately. The Improved YOLOv4 algorithm is shown to have a high effectiveness in enhancing the detection and recognition precision of traffic lights. In the detection experiment, the area under the PR curve value of the Improved YOLOv4 algorithm is found to be 97.58%, which represents an increase of 7.09% in comparison to the 90.49% score gained in the Vision for Intelligent Vehicles and Applications Challenge Competition. In the recognition experiment, the mean average precision of the Improved YOLOv4 algorithm is 82.15%, which is 2.86% higher than that of the original YOLOv4 algorithm. The Improved YOLOv4 algorithm shows remarkable advantages as a robust and practical method for use in the real-time detection and recognition of traffic signal lights.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Jian Yin ◽  
Zhibo Zhou ◽  
Shaohua Xu ◽  
Ruiping Yang ◽  
Kun Liu

Aiming at the problem of insignificant target morphological features, inaccurate detection and unclear boundary of small-target regions, and multitarget boundary overlap in multitarget complex image segmentation, combining the image segmentation mechanism of generative adversarial network with the feature enhancement method of nonlocal attention, a generative adversarial network fused with attention mechanism (AM-GAN) is proposed. The generative network in the model is composed of residual network and nonlocal attention module, which use the feature extraction and multiscale fusion mechanism of residual network, as well as feature enhancement and global information fusion ability of nonlocal spatial-channel dual attention to enhance the target features in the detection area and improve the continuity and clarity of the segmentation boundary. The adversarial network is composed of fully convolutional networks, which penalizes the loss of information in small-target regions by judging the authenticity of prediction and label segmentation and improves the detection ability of the generative adversarial model for small targets and the accuracy of multitarget segmentation. AM-GAN can use the GAN’s inherent mechanism that reconstruct and repair high-resolution image, as well as the ability of nonlocal attention global receptive field to strengthen detail features, automatically learn to focus on target structures of different shapes and sizes, highlight salient features useful for specific tasks, reduce the loss of image detail features, improve the accuracy of small-target detection, and optimize the segmentation boundary of multitargets. Taking medical MRI abdominal image segmentation as a verification experiment, multitargets such as liver, left/right kidney, and spleen are selected for segmentation and abnormal tissue detection. In the case of small and unbalanced sample datasets, the class pixels’ accuracy reaches 87.37%, the intersection over union is 92.42%, and the average Dice coefficient is 93%. Compared with other methods in the experiment, the segmentation precision and accuracy are greatly improved. It shows that the proposed method has good applicability for solving typical multitarget image segmentation problems such as small-target feature detection, boundary overlap, and offset deformation.


Author(s):  
Yanhui Zhuang ◽  
Chaoqun Hong ◽  
Xuebai Zhang ◽  
Chaohui Tang ◽  
Huifen Zhou

Sign in / Sign up

Export Citation Format

Share Document