RSOD: Real-time small object detection algorithm in UAV-based traffic monitoring

Author(s):  
Wei Sun ◽  
Liang Dai ◽  
Xiaorui Zhang ◽  
Pengshuai Chang ◽  
Xiaozheng He
Plant Methods ◽  
2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Xuewei Wang ◽  
Jun Liu ◽  
Xiaoning Zhu

Abstract Background Research on early object detection methods of crop diseases and pests in the natural environment has been an important research direction in the fields of computer vision, complex image processing and machine learning. Because of the complexity of the early images of tomato diseases and pests in the natural environment, the traditional methods can not achieve real-time and accurate detection. Results Aiming at the complex background of early period of tomato diseases and pests image objects in the natural environment, an improved object detection algorithm based on YOLOv3 for early real-time detection of tomato diseases and pests was proposed. Firstly, aiming at the complex background of tomato diseases and pests images under natural conditions, dilated convolution layer is used to replace convolution layer in backbone network to maintain high resolution and receptive field and improve the ability of small object detection. Secondly, in the detection network, according to the size of candidate box intersection ratio (IOU) and linear attenuation confidence score predicted by multiple grids, the obscured objects of tomato diseases and pests are retained, and the detection problem of mutual obscure objects of tomato diseases and pests is solved. Thirdly, to reduce the model volume and reduce the model parameters, the network is lightweight by using the idea of convolution factorization. Finally, by introducing a balance factor, the small object weight in the loss function is optimized. The test results of nine common tomato diseases and pests under six different background conditions are statistically analyzed. The proposed method has a F1 value of 94.77%, an AP value of 91.81%, a false detection rate of only 2.1%, and a detection time of only 55 Ms. The test results show that the method is suitable for early detection of tomato diseases and pests using large-scale video images collected by the agricultural Internet of Things. Conclusions At present, most of the object detection of diseases and pests based on computer vision needs to be carried out in a specific environment (such as picking the leaves of diseases and pests and placing them in the environment with light supplement equipment, so as to achieve the best environment). For the images taken by the Internet of things monitoring camera in the field, due to various factors such as light intensity, weather change, etc., the images are very different, the existing methods cannot work reliably. The proposed method has been applied to the actual tomato production scenarios, showing good detection performance. The experimental results show that the method in this study improves the detection effect of small objects and leaves occlusion, and the recognition effect under different background conditions is better than the existing object detection algorithms. The results show that the method is feasible to detect tomato diseases and pests in the natural environment.


2018 ◽  
Vol 47 (7) ◽  
pp. 703005 ◽  
Author(s):  
吴天舒 Wu Tianshu ◽  
张志佳 Zhang Zhijia ◽  
刘云鹏 Liu Yunpeng ◽  
裴文慧 Pei Wenhui ◽  
陈红叶 Chen Hongye

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Haotian Li ◽  
Kezheng Lin ◽  
Jingxuan Bai ◽  
Ao Li ◽  
Jiali Yu

In order to improve the detection rate of the traditional single-shot multibox detection algorithm in small object detection, a feature-enhanced fusion SSD object detection algorithm based on the pyramid network is proposed. Firstly, the selected multiscale feature layer is merged with the scale-invariant convolutional layer through the feature pyramid network structure; at the same time, the multiscale feature map is separately converted into the channel number using the scale-invariant convolution kernel. Then, the obtained two sets of pyramid-shaped feature layers are further feature fused to generate a set of enhanced multiscale feature maps, and the scale-invariant convolution is performed again on these layers. Finally, the obtained layer is used for detection and localization. The final location coordinates and confidence are output after nonmaximum suppression. Experimental results on the Pascal VOC 2007 and 2012 datasets confirm that there is a 8.2% improvement in mAP compared to the original SSD and some existing algorithms.


Sensors ◽  
2021 ◽  
Vol 21 (5) ◽  
pp. 1926
Author(s):  
Kai Yin ◽  
Juncheng Jia ◽  
Xing Gao ◽  
Tianrui Sun ◽  
Zhengyin Zhou

A series of sky surveys were launched in search of supernovae and generated a tremendous amount of data, which pushed astronomy into a new era of big data. However, it can be a disastrous burden to manually identify and report supernovae, because such data have huge quantity and sparse positives. While the traditional machine learning methods can be used to deal with such data, deep learning methods such as Convolutional Neural Networks demonstrate more powerful adaptability in this area. However, most data in the existing works are either simulated or without generality. How do the state-of-the-art object detection algorithms work on real supernova data is largely unknown, which greatly hinders the development of this field. Furthermore, the existing works of supernovae classification usually assume the input images are properly cropped with a single candidate located in the center, which is not true for our dataset. Besides, the performance of existing detection algorithms can still be improved for the supernovae detection task. To address these problems, we collected and organized all the known objectives of the Panoramic Survey Telescope and Rapid Response System (Pan-STARRS) and the Popular Supernova Project (PSP), resulting in two datasets, and then compared several detection algorithms on them. After that, the selected Fully Convolutional One-Stage (FCOS) method is used as the baseline and further improved with data augmentation, attention mechanism, and small object detection technique. Extensive experiments demonstrate the great performance enhancement of our detection algorithm with the new datasets.


Sign in / Sign up

Export Citation Format

Share Document