Transmission congestion management with reactive power support in hybrid electricity market

Author(s):  
M. Mandala ◽  
C. P. Gupta
2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
K. Vijayakumar

Congestion management is one of the important functions performed by system operator in deregulated electricity market to ensure secure operation of transmission system. This paper proposes two effective methods for transmission congestion alleviation in deregulated power system. Congestion or overload in transmission networks is alleviated by rescheduling of generators and/or load shedding. The two objectives conflicting in nature (1) transmission line over load and (2) congestion cost are optimized in this paper. The multiobjective fuzzy evolutionary programming (FEP) and nondominated sorting genetic algorithm II methods are used to solve this problem. FEP uses the combined advantages of fuzzy and evolutionary programming (EP) techniques and gives better unique solution satisfying both objectives, whereas nondominated sorting genetic algorithm (NSGA) II gives a set of Pareto-optimal solutions. The methods propose an efficient and reliable algorithm for line overload alleviation due to critical line outages in a deregulated power markets. The quality and usefulness of the algorithm is tested on IEEE 30 bus system.


Author(s):  
Naga Raja Kumari.CH ◽  
K. Chendra Sekhar

In a deregulated electricity market whenever congestion management problem occurs, the network collapse because of voltage instability. In this paper total real and reactive power loss deviation based sensitivity indexes (PLDS and QLDS) with rank co-relation concept, has been proposed for the optimal location and operating range of TCSC device. With this placement  the power flow in over loaded overhead lines has been reduced and that results in an increased loadability of the power system and also improves the voltage stability and security and also solves the congestion management problem. So ultimately, a more energy efficient transmission system is possible. The case studies were conducted on IEEE 14 bus test system. The ensue corroborate the intended approach for social welfare maximization inreal time.


Author(s):  
REKHA SWAMI

In power systems, transmission network provides the infrastructure to support a competitive electricity market, but congestion occurs frequently in the weakly connected networks. Transmission congestion can enhance the locational market power in the congested area and weaken the efficiency of electricity market. In this paper market dispatch problem in the pool-based electricity market is formulated so as to maximize the social welfare of market participants subject to operational constraints given by real and reactive power balance equations, and security constraints in the form of apparent power flow limits over the congested transmission lines. The comparisons of the real and reactive power costs of generators, benefit value of consumers, producers surplus, locational marginal prices (LMPs) under uncongested or congested conditions are evaluated by using a five-bus system.


10.29007/1hvd ◽  
2018 ◽  
Author(s):  
Jalpa Jobanputra ◽  
Chetan Kotwal

Optimal utilization of transmission system without congestion in the network is most important as congestion can violet the security of the system. Sufficient amount of reactive power support needs to be provided in the system in order to maintain the power flow limits on transmission lines and voltage limits at bus bars. This Paper focuses on analysis of congestion occurrence with N-1 contingencies for line flow limits in case of line and generator outages using linear sensitivity factors and congestion management using series compensation. Generation shift factor and line outage distribution factor are used to find sensitive lines and series compensation in two stages are applied to the most sensitive lines to relieve congestion. Standard IEEE 6 bus test system is used to analyze contingencies and congestion mitigation. All the simulations are performed using power world simulator version 19.0. Mathematical calculations are also performed for the same 6-bus system for validation of results.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 2017-2020

The power transmission network has the problem of management due to congestion in the open access system. Power flow due to transactions in transmission lines can cause overloads. This condition is known as congestion. There are several alternative methods for congestion management which are suitable for different electricity markets. In this paper the Locational Marginal Pricing (LMP) method is discussed for an assessment of transmission congestion management and results are obtained to manage the transmission congestion such as redispatching existing generators outside the congested area to supply power to the customer. The primal dual IP algorithm is used to calculate the LMP’s and congestion cost values. The proposed work has been implemented on a 14-bus test system to illustrate the advantages and disadvantages of this method


Sign in / Sign up

Export Citation Format

Share Document